看天线,识卫星——漫谈卫星天线(二)
点击上方蓝色字体,关注我们
作者 | 超级loveovergold
——美国导航卫星创意的摇篮
在上期《看天线,识卫星——漫谈卫星天线(一)》讲到的苏联第一颗人造地球卫星Sputnik 1的全向鞭状天线,让地面测控站甚至无线电爱好者都能接收到信号。美苏虽为冷战敌对阵营,但心有灵犀,冥冥中,美国约翰霍普金斯大学应用物理实验室(The Johns Hopkins University Applied Physics Laboratory,简称APL)两位年轻人,吉勒(William Guier)和维芬巴哈(George Weiffenbach),制作了天线和放大器,轻而易举的收到了卫星发射的20.005MHz的信号,实验室的同事们沸腾了!
Sputnik 1发射的是平淡乏味的“哔哔哔”,但卫星近3万公里的时速,让频率有500 Hz~1500 Hz的偏移!两人在兴奋之余,脑洞大开,产生了基于多普勒频移效应来计算卫星相对速度的想法,进而从多次测量的多普勒频移数据中推断出卫星的轨道。
图1.多普勒效应,汽车驶来,喇叭声由高变低就是多普勒效应
这其中需要解决地球南北不对称、电离层折射校正、卫星振荡器频率漂移校正等工作,在学校的支持下,两个年轻人还用上了实验室刚引入不久的Univac 1200F数字计算机,成功推算出卫星的运行轨道。
实验室研究中心主席麦克卢尔(Frank McClure)找到了他们,启发他们研究用已知的几颗卫星轨道,通过多普勒频移计算出接收器所在的位置。这个课题圆满成功,1958年12月,美国海军武器实验室委托美国约翰霍普金斯大学应用物理实验室研制海军导航卫星系统(Navy Navigation Satellite System ,NNSS)。
第一颗成功入轨的“子午仪”试验卫星Transit 1B于1960年4月13日发射,发射54、162、216和324 MHz等不同频率信号,这些信号提供了实验数据,用来评估电离层的折射效应。1964年NNSS建成并投入使用,1967年开放民用。下图为OSCAR型号NNSS导航卫星长达18米的杆子并不是它的天线,而是用来保持卫星姿态的重力梯度杆。该卫星的天线在150MHz和400 MHz上发射信标信号,双频用于抵消卫星无线电信号在电离层的折射,从而提高定位精度。
图2.艺术家描绘的太空中的TRANSIT(子午仪) Oscar卫星
图3.运行在极轨的5颗子午仪卫星
该系统的卫星运行在极轨,但数量少(5~6颗)、轨道高度较低(1070km)、卫星间隔时间较长,其定位需要在35到100分钟才能完成(平均约90分钟),难以提供高程数据、无法连续进行三维坐标定位,精度也相对较低。1973年美国国防部协同有关军方机构共同研究开发新一代的卫星导航系统。这就是“授时与测距导航系统/全球定位系统”,简称“全球定位系统”(GPS)。
GPS系统的空间部分由24颗卫星组成,位于距地表20187千米的上空,运行周期为12小时。卫星均匀分布在6个轨道面上(每个轨道面4颗),轨道倾角为55度。如此分布使得在全球任何地方、任何时间都可观测到4 颗以上的卫星。
相较于简单的多普勒频移定位,GPS系统要复杂得多,简单来说,GPS卫星上有非常精密的原子钟,在其广播的导航电文中包含了信号发送的时间,接收端根据本地时间做减法,再乘以光速,就是接收机到卫星的距离。如果同时测算三颗卫星的信号,就可以根据三角测量法确认位置。
图5.这就是为什么导航卫星需要精密时钟的原因
不过,接收机很难有和卫星同步的精准时间,因此除了用户的三维坐标x、y、z外,还要引进一个卫星与接收机之间的时间差作为未知数,然后用4个方程将这4个未知数解出来。所以如果想知道接收机所处的位置,需要接收到4个卫星的信号,方能准确知晓位置。
图6.通过捕捉第四颗卫星信号,计算出时间修正参数Δt
GPS卫星提供了P码(精码)和C/A码(粗码)两种定位服务。P码为军方服务,调制在L波段1575.425MHz(下称L1载波),定位精度达到3米;C/A码对社会开放,调制在L波段1227.6MHz(下称L2载波),定位精度为14米。但如何能够让地面用户收到远在2万多公里外发出的导航电文信号,是个难题!
GPS卫星的L波段天线被设计成固定波束面向地球的一面,由于轨道高度为运行时长12小时的中地球轨道,距离地球2.0187万公里,波束宽度约为27.7度,天线允许的对地角度偏差为±0.15度,因此波束宽度约为28度。但是,天线设计的目标是其增益要有形状,契合地球球形的形状,让卫星星下点和地球边缘的信号衰减相差2.1dB,节省功耗,提高效能。
图7.GPS卫星天线的增益要契合地球球形的形状,让卫星星下点和地球边缘的信号衰减相差2.1dB。
因此在研发中,导航信号发射天线的焦点被汇聚在螺旋天线上。
美国俄亥俄大学教授、科学家约翰·克劳斯(John D. Kraus)1946年听了一个讲座,得知在行波管中用螺线管作为导波结构。于是他联想到,是否可以用螺线管来作为天线?当时报告人的回答是已经试过,肯定不行。但克劳斯认为,如果直径够大,肯定会有辐射产生。当晚,他就在家中地下室里绕了一个周长为一个波长、一共七圈的金属螺线,用12厘米波长震荡源通过同轴线馈电,结果在螺线终端方向测到了圆极化辐射。
图8.金属反射圆盘连接同轴线外导体,金属螺线连接芯线
测到,是不是偶然?克劳斯重复了实验,又绕了一个螺线再度验证了这一特性。可以说是一夜成功!但他说,为了理解这种嬗变的天线,随后却花了好几年。
别看螺旋天线结构简单,不过是绕圈而已,其实大有学问!螺旋天线可分为立体螺旋天线(helical antenna)和平面螺旋天线(spiral antenna)。立体螺旋天线根据绕成的形状的不同,又可分成圆柱形螺旋天线、圆锥形螺旋天线等等;圆锥形螺旋天线又称为盘旋螺线型天线,可同时在两个频率工作。平面螺旋天线的基本形式为等角螺旋天线和阿基米德螺旋天线,在结构上又有单臂、双臂、四臂之分,平面螺旋天线一般在后面添加背腔来提高增益。本文重点讲的是圆柱形螺旋天线,它的辐射特性很大程度上决定于螺旋天线直径与波长的比值。
图9.螺旋天线直径对方向图的影响
如果螺线绕的很细密,D/λ<0.18,直径远小于波长,天线的主射方向垂直于螺旋天线轴,这种工作模式称为法向模,其实和半波振子天线相仿,频带很窄,其天线方向图就是上期讲到的甜甜圈。但其优点不仅仅是天线的长度可以大幅度缩短,而且螺线所具有的电感可以抵消电短天线固有的容抗,辐射电阻较大,便于匹配,广泛应用于GSM手机的外置天线。
图10.GSM900/1800MHz双频螺旋天线
但如果直径和波长比值在0.25~0.46之间,即一圈螺旋周长约为一个波长时,螺旋天线沿轴线方向有最大辐射并在轴线方向产生圆极化波,输入阻抗近于纯电阻,频带较宽,增益较高,这种天线称为轴向模螺旋天线,很快在各领域得到了广泛的应用。而且它的互阻抗几乎可以忽略,因此很容易用来组成天线阵列。
当D/λ进一步增大,在D/λ>0.5时,最大辐射方向偏离轴线方向,天线的辐射呈圆锥状,被称为圆锥模,一般用于电磁对抗天线。
天线阵的初始概念和设计由罗克韦尔国际公司(Rockwell International)的空间系统分部(Space systems Division)研发,BLOCK I天线非常惊艳,12根短枪,也就是12个单旋螺旋天线组成了L波段的发射阵列,长枪是一个圆锥形螺旋天线,是S波段TT&C全向天线,也就是Telemetry, Tracking and Command Antenna,遥测、跟踪和指令天线。
图11.第一代GPS卫星的视觉杀伤力非常强大,广泛地在科幻作品中“发射死亡激光”
朝向地球的卫星面板上,12个螺旋天线组成的阵列,其实是相控阵定相天线,由内外两圈同心圆排列而成,4个单元等间距组成半径为16.24厘米的内圈,8个单元等间距组成的外圈半径为43.82厘米。螺旋天线半径3.56厘米,长度51.18厘米,D/λ在0.28~0.38之间,是工作在轴向模式的螺旋天线,在1200-1600 MHz的宽频范围内发射L1和L2右旋圆极化信号,圆极化电波可以有效避免信号在穿越电离层时出现的法拉第旋转效应对传输的影响。整个天线完全是无源设计,具有很高的可靠性,同时质量非常轻巧。
图12. 12个螺旋天线组成的相控阵阵列天线,由内外两圈同心圆排列而成
L1载波的射频放大器功率为50W,L2载波的射频放大器功率为10W,通过输入耦合器进行功率分配,90%的功率驱动内圈4个螺旋天线单元,产生高信号功率的宽幅波束;10%的功率用于驱动外圈8个天线单元,产生较弱信号的较窄波束。然而在相位上,两路信号设置成相差180度。
图13.两路载波信号经过耦合器功率分配之后,移相驱动内外两圈发射单元
内外两环信号相隔180度相位,其实相当于两路信号做了一次减法,即下图中红色减去蓝色,得到绿色复合的28度的天线辐射图案,可以看到绿色线条最左边的增益凹陷部位完美契合地球形状。
图14.红色的主信号减去蓝色的信号,得到契合地球形状的天线增益
得益于螺旋天线轴向模的高增益,同时采用这种相控阵定相设计,几乎恒定的信号强度照射地球半球,降低了GPS航天器所需的总发射功率,减少了卫星上太阳能电池和蓄电池的数量和重量,简化了卫星的复杂性和成本。
1978年至1985年间从范登堡空军基地发射了11颗Block I GPS卫星,Block I卫星的最终入轨质量735磅,整星功率500瓦,它们由三个可充电镍镉电池和7.25平方米的太阳能电池板供电,依靠肼推进器进行轨道位置保持。
这些卫星的设计寿命为4.7年,但实际平均寿命为8.76年,几乎是设计寿命的两倍,星载的铷/铯钟被证明是系统中最脆弱的部件。最后一颗Block I卫星于1995年底退役。
12个螺旋天线的设计是非常成功的,一直被保持了下来。在后续BLOCK II / IIA卫星中,螺旋天线的顶部绕圈改为圆锥形设计,这种设计显著减少了侧面和后瓣辐射,提升了天线效率。
图15.BLOCK II / IIA卫星中,螺旋天线的顶部绕圈改为圆锥形设计,枪头变尖
洛克希德马丁公司在Block IIR设计中进行了一些更改,内外圈天线单元的射频功率分配作了优化,内外环两组天线的180移相方式也做了优化,其中通过电桥进行90度移相,另外90度移相则通过两组天线之间90度机械旋转实现。
同时螺旋天线的理论研究还在继续,20世纪70年代,苏联科学家尤尔采夫和鲁诺夫对各种形式的螺旋天线进行了比较系统的理论分析和设计研究,各国学者在此基础上深入研究,延伸出很多变种,尤其是四臂螺旋天线因其高增益、方向性好、圆极化的特点,得到了深入的发展和实际应用。这种天线很快也将出现在GPS卫星上,如下图周边一圈8+1+1个胖胖的天线,就是Block IIR用于UHF频段通信的四臂螺旋天线,其用途具体见Willard Marquis和Daniel Reigh写的《On-Orbit Performance of the Improved GPS Block IIR Antenna Panel》。
图16. IIR增加了UHF频段通信的四臂螺旋天线,12个螺旋天线反射器也有改进
波音公司生产的GPS BLOCK IIF卫星配备两个高稳定性铷钟和一个铯原子钟,以提供准确的导航信号,信号准确度是传统模型的两倍,但发射天线保留了经典设计,设计寿命为12年,从2010年5月28日开始,已经发射了12颗,是目前GPS卫星的主力。
图17.波音公司生产的BLOCK IIF卫星是目前GPS的主力
图18.洛克希德马丁公司生产的BLOCK III卫星是最新的GPS卫星
斯坦福大学2015年的SCPNT(Stanford Center for Position, Navigation and Time)研讨会上,一位名为Shankar Ramakrishnan的学生利用逆向工程方法,算出了GPS BLOCK III的3D方向图,可以较为直观地了解12组元L波段螺旋天线的辐射(其实一直希望有一种AR技术,能够“看到”看不见的电波)。
图19.Shankar Ramakrishnan用逆向工程法绘制的GPS BLOCK III的3D方向图
就像是一个师傅教出来的一样,俄罗斯的格洛纳斯K卫星也是采用了非常类似的设计。
图20.在2011年Cebit展上露脸的格洛纳斯K卫星
对螺旋天线的研究在持续进行,主要是在扩展带宽、增强方向性即提高增益,提高圆极化纯度和小型化等方面,与轴向模式螺旋天线和喇叭天线相比,逆火螺旋天线(BACKFIRE)作为比抛物面反射器的更好的馈电元件也已走上舞台。
欧洲在卫星导航技术上不甘心受制于美国,欧盟于1999年首次公布了伽利略卫星导航系统计划,其目的是摆脱对GPS的依赖,打破其垄断,从而在全球高科技竞争浪潮中获取有利位置,并为将来建设欧洲独立防务创造条件。
伽利略系统的核心部分是在空间部署30颗导航卫星,采用23616km 的中地球轨道,3个轨道面,轨道面间夹角120度,轨道倾角56度,轨道周期14h 4min,地面轨迹重复周期10天,30颗卫星等间隔地分布在三个轨道面上。导航信号分别为E1、E5及E6。
和GPS系统一样,伽利略导航卫星同样需要覆盖球形的地球表面,由于在大约24000km的高度轨道运行,波束宽度较GPS的28度缩小为约24度,并且覆盖边缘所需的增益比中心处的增益高约2.5dB。
在L波段主天线选择上,欧空局另辟蹊径,采用了微带天线多层平面技术。微带天线具有剖面低、重量轻、体积小、易于共形等优点,空间应用潜力巨大。两个相位相差90度的微带天线可以发射圆极化电波;但微带天线也有发射频带窄的劣势,因此天线单元采用两组4层微带天线堆叠而成,组装在紧凑、轻便且可拆卸的独立单元中,中间由蜂窝垫片支撑。由两个分别在1.2G/1.5G频段的独立BFN(波束成形网络)馈电,形成双频右旋极化波。
图21. 4层微带天线堆叠而成的天线发射单元
微带天线的整个天线单元由36个微带天线堆叠贴片单元组成,阵列网格是混合点阵,针对双频段功能进行了优化,两个频段的增益均为15 dBi,重量仅为21.9千克。当中核心区块,4+8的单元设计,与前述螺旋天线阵列完全一致。
图22.当中核心区块,4+8的单元设计,你是否熟悉?不是费列罗,而是前述螺旋天线阵列
欧空局在2005年12月发射了伽利略导航首颗在轨试验卫星,GIOVE(Galileo In-Orbit Validation Element)-A,后续又持续进行了试验和改进,L波段天线出现了几种不同的改变,尚无文献说明天线阵列改变的目的和效果。最终版本被称为FOC (Full Operational Capability) ,可见其天线核心的阵列又恢复到GPS BLOCK I类型的阵列。
图23.4代伽利略导航卫星
图24. Shankar Ramakrishnan用逆向工程法绘制的伽利略主天线的3D方向图
据传,我国MEO北斗卫星的L波段主任务天线也采用了微带天线多层平面技术,然而至今仍犹抱琵琶半遮面。下图为一位国外艺术家J·Huart绘制的想象图。
图25.国外艺术家绘制的北斗MEO导航卫星
从GPS的长枪短炮到伽利略的斑斑点点,导航卫星的天线技术在不断进步,同步原子钟技术、扩频通信技术、定位数据处理等等技术革新,才让现在的定位精度有了显著提高,并实实在在地从外卖点餐到开车导航,走进了老百姓的寻常生活。
(未完待续。后续文章中,静止轨道、对地观测等卫星的天线将依次登场,敬请期待……)
附:如果读者中有在校学生,虽然电磁场与辐射、微波理论、天线理论与技术等课程,可能是大学本科阶段无线电或通信专业最为枯燥的几门功课,希望本文对你的学习有所帮助,请沉下心,未来的你会感谢现在的努力。
这是卫星吗?猜猜看,这是什么卫星?
作者介绍
超级Loveovergold
一个孤独的行者
请关注新浪微博:(超超级Loveovergold)
往期回顾
本文系《卫星与网络》原创,转载及引用部分观点至微信公众号或其它新媒体平台、及网站,请在文首注明出处、公众号ID及作者。感谢支持有态度的媒体!
未按照规范转载及引用者,《卫星与网络》保留追究相应责任的权利
▲卫星与网络微信公众号(ID:satnetdy)团队
负责人:农燕
主笔记者:贺鹏梓、李刚、空天松鼠、黑法丝
编辑:杨艳、朝晖、林紫、娜娜
设计:郑慧
原创文章转载授权、转载文章侵权、投稿、媒体合作等事宜,请加微信号:nongyan258766
【 猜你想读】
▼
天线技术的进化激发卫星星座的未来 | 产业观察
请输入标题 abcde
推/荐/阅/读
▼
组建国家空间实验室:
组建国家空间实验室(二):我们对宇宙的认识尚在萌芽期,实验室的建设极为必要
组建国家空间实验室(三):历史节点上的失误和遗憾——尼克松政府的决策失误对美国空间站计划的负面影响
社论:
创新是一种态度 ——国外国防航天领域的成功创新案例与机制探讨
一个可能比马斯克更厉害的家伙:OneWeb和它的老板格里格·维勒
融入人民生活,推动文明进步
——谈“航天+”的理念与实践设想:
商业航天与航天商业化:
大航天时代:
跳出航天:
北斗白皮书的产业化解读:
独家:中国的北斗卫星导航系统 白皮书的产业化解读:北斗的未来在世界
航天技术民用及二次开发:
分享最前瞻性话题,
传递最正能量声音。
卫星应用领域第一刊
卫星与网络
内容、营销合作请联系:
微信号:nongyan258766
投稿邮箱:
Emil:tougao@yinhexi.la
杂志订阅请联系:
Emil:dingyue@yinh
卫星与网络satnetdy
关注微信号,每天收看我们的消息
卫星与网络为您推送精品阅读