Neural Regen Res 综述︱小胶质细胞的极化及与其他细胞的对话在阿尔茨海默病治疗中的作用及潜能
编辑︱夏 叶
AD是CNS退行性疾病,以认知功能和行为障碍为主要临床特征,在现代社会日益受到重视[1]。小胶质细胞作为CNS的固有免疫细胞,可以通过激活炎症信号通路,参与神经退行性变的发生和进展,从而影响AD患者的预后[2]。根据特定的特征,被激活的小胶质细胞可分为两大类:M1和M2 [3-9]。
这种简化的二分法现在仍然应用于临床和实验研究中。然而,就目前的研究进展而言[10-12],已知AD中的小胶质细胞以多种不同的激活状态存在,通过描述其连续性变化可以证明小胶质细胞极化的连续性(图1)。目前,对促炎M1型小胶质细胞的极化通常认为与AD中的慢性神经炎症有关,其中β-淀粉样蛋白(Aβ)的沉积随着CNS炎症水平的增加而增加[13]。即使是被认为具有抗炎功能的M2型小胶质细胞产生的诸多因子对AD也不是完全有益[14]。因此,为了治疗AD,有必要在AD的不同阶段通过改变小胶质细胞的极化来调整微妙的治疗平衡。
小胶质细胞作为负责维持CNS内稳态的主要免疫细胞,持续监测神经系统损伤迹象(如病原体入侵或组织损伤),然后产生一系列反应,以解决在免疫防御中遇到的损伤因素[15.16]。在AD发病过程中,小胶质细胞不断被激活,随后变成圆形迁移细胞,称为“变形虫”细胞[17,18]。这些活化的小胶质细胞表现出迁移和吞噬能力,包裹Aβ和降解其他物质[19],进而影响AD的预后。
(一)AD中小胶质细胞的迁移作用
小胶质细胞以生理状态驻留在CNS中,被称为静息小胶质细胞。它们具有胞质体较小、细长的突起和表面有较多的分支等特点,是CNS的守门人[23]。小胶质细胞不断运动,能感知周围环境的变化,维持机体的稳态。然而,AD等病理状态下的小胶质细胞是由多种因素和表面相关的各种受体激活的,如TREM2和toll样受体(TLRs),它们可以与Aβ和载脂蛋白E (ApoE)相互结合,然后定向迁移到损伤部位[24,25]。
(二)AD中小胶质细胞的吞噬作用
小胶质细胞可直接吞噬AD毒性产物如Aβ和tau蛋白,在AD治疗中具有优势。然而,最近的研究表明,小胶质细胞吞噬并不总是有益的,在一定程度上与特定的临床阶段有关[31]。在只有AD病理生理变化但没有或只有轻微临床症状的患者中,增强的小胶质细胞吞噬作用降低了Aβ水平,减缓了SP的形成,并防止了神经纤维缠结(NFT)的产生,这些都有助于阻止AD的发病,延缓AD的临床进展[32]。由于溶酶体较少,小胶质细胞在吞噬Aβ和tau蛋白后吞噬能力下降[33]。更重要的是,发挥吞噬作用后,细胞代谢产生的炎性囊泡级联(如NLRP3)和炎性细胞因子(如TNF- α、IL-1)的存在会导致小胶质细胞反过来向促炎方向极化,从而诱导促炎细胞因子的分泌,使炎症反应加剧、对Aβ吞噬的减少和对tau蛋白病理反应的促进[34]。同时,小胶质细胞吞噬能力会随着年龄增长或长时间暴露在Aβ负荷增加的环境中而下降[35]。
CNS中不同类型的胶质细胞,包括小胶质细胞、星形胶质细胞和少突胶质细胞,发挥不同的功能,并通过被称为神经免疫的多种细胞间串扰机制协调CNS和神经元的稳态[36]。细胞有能力通过相互串扰来放大它们的功能[37]。因此,当疾病影响其中一个细胞时,它们通常会直接或间接地影响其他细胞(图2)。
图2. 阿尔茨海默病中的小胶质细胞和其他细胞之间的串扰
(图源:Wu Y, et al., Neural Regen Res, 2022)
(一)AD中小胶质细胞和星形胶质细胞之间的串扰
在AD中,这两种类型的胶质细胞之间存在广泛的对话与串扰[39]。极化的小胶质细胞通过炎症串扰和其他机制与星形胶质细胞进行通信,激活并极化星形胶质细胞[40]。AD的病理产物(如Aβ和tau)有助于小胶质细胞极化,使小胶质细胞的促炎表型占主导,并诱导促炎因子如IL-1β、IL-6、TNF-ɑ和NO的分泌[41]。这些因子不仅会降低小胶质细胞的吞噬作用,还会触发星形胶质细胞形成促炎表型,并加剧促炎因子的表达水平[42]。同样,星形胶质细胞的激活有助于AD中的小胶质细胞极化。当Aβ等病理产物受到刺激时,星形胶质细胞中NF-κB相关信号通路被激活,从而导致补体C3的释放。这激活了小胶质细胞表面的C3受体,并导致促炎极化和吞噬功能受损[43]。简而言之,小胶质细胞和星形胶质细胞之间的炎症串扰发生在AD的发生发展过程中[44]。
(二)AD中小胶质细胞和少突胶质细胞之间的串扰
(三)AD小胶质细胞与神经元之间的串扰
谷氨酸是CNS中最重要的兴奋性神经递质,直接参与小胶质细胞与神经元之间的串扰,过多或过少的谷氨酸释放会对神经传递产生严重后果,导致AD的发展[56]。然而,在神经炎症和AD条件下,小胶质细胞倾向于释放过量的谷氨酸,导致AD中的神经元兴奋性毒性并加剧神经退行性过程[57]。胱氨酸(Cys)/谷氨酸交换器(Xc(-)交换器),以及炎症刺激时d-丝氨酸释放,直接影响CNS中的谷氨酸水平[58],进而影响小胶质细胞与神经元间的对话。
在AD持续慢性炎症的条件下,炎症因子如TNF-α、IL-6、NO和ROS的释放增加了神经元的死亡[59]。同时,小胶质细胞内稳态的丧失诱导促炎因子的进一步释放和更多的神经元死亡,从而导致恶性循环[60]。随着AD的进展,神经元被促炎性极化的小胶质细胞诱导的炎症环境所损伤。由于Aβ的积累,神经元本身也被诱导表现出各种病理特征[61]。神经元功能的减弱,反过来又对小胶质细胞极化有显著影响。小胶质细胞和神经元之间的相互作用就像一根平衡梁的两端,一端的损伤会对另一端造成严重破坏。小胶质细胞的激活不是单一的促炎或抗炎极化,而是细胞状态的不同或功能的重叠等的一系列变化[62]。这也许可以解释为什么随着AD的进展,促炎性小胶质细胞增多,造成更多的神经元死亡,从而导致AD患者临床症状进行性加重。
(四)AD中小胶质细胞和外周固有免疫细胞之间的串扰
研究成果表明,AD中小胶质细胞与其他细胞间的对话在CNS炎症中起着关键作用。本文就小胶质细胞在AD炎性环境中的主导作用及其与其他细胞的相互作用作了综述。通过探索小胶质细胞与其他细胞之间相互作用的机制,为减轻神经炎症提供了理论基础。减少神经炎症对进一步研究神经再生无疑具有重要意义。通过调节小胶质细胞与其他细胞之间的串扰,也许能减少炎症损伤引起的神经元死亡,同时也为新神经元的后续再生提供良好的环境。此外,由于AD常伴有血脑屏障的破坏,因此很难预测CNS内固有细胞与外周细胞之间的串扰,这些细胞是否有利于AD的治疗仍有争议。
作者相信这篇综述可以为研究者提供新的概念。正如Frozza等人所指出的,AD治疗策略的细微进步,即使是发病时间的轻微延迟,也可以减少疾病的整体负担。通过干预小胶质细胞的极化来延缓AD的进展可能为未来AD的成功治疗铺平道路。
原文链接:https://doi.org/10.4103/1673-5374.355747
基金支持:国家自然科学基金项目(81473577,82004028)、中国博士后科学基金面上资助项目(2020M680912)、山西省应用基础研究计划项目(201901D211538)、山西省教育厅高等学校科技创新项目(2019L0734)、山西省卫健委医学科技领军团队(2020TD05)、山西省卫健委神经疾病防治研究重点实验室(2020SYS20)、山西中医药大学青年科学家培育项目(2021PY-QN-09)和山西中医药大学学科建设经费资助项目。
第一作者:吴艺舸硕士(左)、宋丽娟副教授(中),通讯作者:马存根教授(右)
(照片提供自:山西中医药大学神经生物学研究中心/国家中医药管理局多发性硬化益气活血重点研究室)
马存根,中心/研究室主任,二级教授,博导,学科带头人,教育部中医学类教学指导委员会委员;世界中医药学会联合会仲景传承与创新专业委员会/中华中医药学会仲景学术传承与创新共同体副理事长。研究方向为中西医结合防治中枢神经系统疾病。先后发表学术论文280余篇,其中中文核心(或SCI)论文212篇,并被Immunol Res、Glia等期刊论文正面引用2000余次。
山西中医药大学神经生物学研究中心/国家中医药管理局多发性硬化益气活血重点研究室是国家中医药管理局重点学科。经过多年的建设,学科逐步凝练形成了四个稳定的研究方向,即中西医结合防治缺血性脑血管疾病的作用及其机制研究、中西医结合防治多发性硬化和其他脱髓鞘疾病的作用及其机制研究、中西医结合防治阿尔茨海默病和血管性痴呆的作用及其机制研究、中西医结合防治帕金森病和其他运动障碍性疾病的作用及其机制研究。这四个方向均以中医学理论益气活血法防治上述疾病为研究特色;并形成了基于这些疾病以神经炎症、氧化应激和异常的免疫反应等病理特征为共同发病基础,运用中医学传统理论“异病同治”进行干预的研究优势。
【1】Mol Neurobiol︱朱立新/郭家松团队揭示基底膜蛋白Perlecan在脊髓损伤后血脊髓屏障功能恢复中的重要作用
【2】Transl Psychiatry︱杨勋团队揭示精神分裂症在奖励预期和奖励结果阶段的不同神经机制
【3】Schizophrenia︱精神分裂症患者的脑网络枢纽中心与工作记忆表现
【4】Front Cell Neurosci︱利用文献计量学分析星形胶质细胞与脑卒中的研究趋势
【5】Cereb Cortex︱刘涛团队揭示高龄老人白质结构加速退化模式
【6】Biophys J︱徐光魁教授课题组揭示细胞皮层非线性幂律松弛的网络动力学
【7】Science︱利用单细胞多组学技术分析墨西哥蝾螈的神经发生和再生
【8】J Neuroinflammation 综述︱倪文飞/周凯亮团队聚焦STING通路在CNS损伤后神经炎症及细胞死亡中的重要作用
【9】Sci Adv︱盛能印/毛炳宇/丁玉强团队合作发现AMPA受体泛素化在兴奋性突触功能调控中的新机制
【10】Brain︱刘刚/胡庆茂团队揭示辅助运动区在眼睑痉挛患者全脑结构网络改变中的驱动作用
优质科研培训课程推荐【1】单细胞测序与空间转录组学数据分析研讨会(10月29-30日 腾讯在线会议)会议/论坛/研讨会预告【1】Immune Zoom Seminar︱B细胞在免疫和神经系统中的筛选(徐和平教授)
【2】学术会议︱2022年神经环路示踪技术专题研讨会暨第六届神经环路示踪技术全国培训班第二轮会议通知
【3】圆桌会议︱徐富强/贾怡昌/韩蓝青/蔡磊等探讨神经退行性疾病和眼科疾病的基因治疗创新
欢迎加入“逻辑神经科学”【1】“ 逻辑神经科学 ”诚聘编辑/运营岗位 ( 在线办公)【2】人才招聘︱“ 逻辑神经科学 ”诚聘文章解读/撰写岗位 ( 网络兼职, 在线办公)
参考文献(上下滑动阅读) [1] Tublin JM, Adelstein JM, Del Monte F, Combs CK, Wold LE (2019) Getting to the heart of Alzheimer disease. Circ Res 124:142-149.
[2] Doust YV, King AE, Ziebell JM (2021) Implications for microglial sex differences in tau-related neurodegenerative diseases. Neurobiol Aging 105:340-348.
[3] Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G (2021) Microglial adenosine receptors: from preconditioning to modulating the M1/M2 balance in activated cells. Cells 10:1124.
[4] Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987-991.
[5] Devanney NA, Stewart AN, Gensel JC (2020) Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 329:113310.
[6] Wright-Jin EC, Gutmann DH (2019) Microglia as dynamic cellular mediators of brain function. Trends Mol Med 25:967-979.
[7] Cornell J, Salinas S, Huang HY, Zhou M (2022) Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res 17(4):705-716.
[8] Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Sävman K, Mallard C, Gressens P, Fleiss B. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro (2013) Brain Behav Immun 32:70-85.
[9] Sarlus H, Heneka MT (2017) Microglia in Alzheimer's disease 127:3240-3249.
[10] Yao K, Zu HB (2019) Microglial polarization: novel therapeutic mechanism against Alzheimer's disease. Inflammopharmacology 28:95-110.
[11] Koh YC, Yang G, Lai CS, Weerawatanakorn M, Pan MH (2018) Chemopreventive effects of phytochemicals and medicines on M1/M2 polarized macrophage role in inflammation-related diseases. Int J Mol Sci 19:2208.
[12] McQuade A, Blurton-Jones M (2019) Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol 431:1805-1817.
[13] Ozben T, Ozben S (2019) Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease. Clin Biochem 72:87-89.
[14] Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, Town T (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85:534-548.
[15] Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, Schwab Y, Gross CT (2018) Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 9:1228.
[16] Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225-242.
[17] Lau SF, Fu AKY, Ip NY (2021) Cytokine signaling convergence regulates the microglial state transition in Alzheimer's disease. Cell Mol Life Sci 78:4703-4712.
[18] Das R, Chinnathambi S (2020) Actin-mediated microglial chemotaxis via g-protein coupled purinergic receptor in Alzheimer’s disease. Neuroscience 448:325-336.
[19] Huang Y, Happonen KE, Burrola PG, O'Connor C, Hah N, Huang L, Nimmerjahn A, Lemke G (2021) Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol 22:586-594.
[20] Zhang X, Ye P, Wang D, Liu Y, Cao L, Wang Y, Xu Y, Zhu C (2019) Involvement of rhoa/rock signaling in aβ-induced chemotaxis, cytotoxicity and inflammatory response of microglial BV2 cells. Cell Mol Neurobiol 39:637-650.
[21] Yu T, Lin Y, Xu Y, Dou Y, Wang F, Quan H, Zhao Y, Liu X (2020) Repressor element 1 silencing transcription factor (REST) governs microglia-like BV2 cell migration via progranulin (PGRN). Neural Plast 2020:8855822.
[22] Chidambaram H, Das R, Chinnathambi S (2022) G-protein coupled purinergic P2Y12 receptor interacts and internalizes TauRD-mediated by membrane-associated actin cytoskeleton remodeling in microglia. Eur J Cell Biol 101:151201.
[23] Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312-318.
[24] Ulrich JD, Ulland TK, Mahan TE, Nyström S, Nilsson KP, Song WM, Zhou Y, Reinartz M, Choi S, Jiang H, Stewart FR, Anderson E, Wang Y, Colonna M, Holtzman DM (2018) ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med 215:1047-1058.
[25] Salcman B, Affleck K, Bulfone-Paus S (2021) P2X receptor-dependent modulation of mast cell and glial cell activities in neuroinflammation. Cells 10:2282.
[26] Domingues C, da Cruz E Silva OAB, Henriques AG (2017) Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr Alzheimer Res 14:870-882.
[27] Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276-1290.e17.
[28] Podleśny-Drabiniok A, Marcora E, Goate AM (2020) Microglial phagocytosis: a disease-associated process emerging from Alzheimer’s disease genetics. Trends Neurosci 43:965-979
[29] Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283-92.
[30] Doran AC, Yurdagul A Jr, Tabas I (2020) Efferocytosis in health and disease. Nat Rev Immunol 20:254-267.
[31] Anwar S, Rivest S (2020) Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin Ther Targets 24:331-344.
[32] Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S, Cella M, Grutzendler J, DeMattos RB, Cirrito JR, Holtzman DM, Colonna M (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667-675.
[33] Carosi JM, Sargeant TJ (2019) Rapamycin and Alzheimer disease: a double-edged sword?. Autophagy15:1460-1462.
[34] van Olst L, Verhaege D, Franssen M, Kamermans A, Roucourt B, Carmans S, Ytebrouck E, van der Pol SMA, Wever D, Popovic M, Vandenbroucke RE, Sobrino T, Schouten M, de Vries HE (2020) Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiol Aging 89:89-98.
[35] Rajendran L, Paolicelli RC (2018) Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci 38:2911-2919.
[36] Delpech JC, Herron S, Botros MB, Ikezu T (2019) Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci 42:361-372.
[37] Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG (2021) The emerging role of the interplay among astrocytes, microglia, and neurons in the hippocampus in health and disease. Front Aging Neurosci 13:651973.
[38] Fakhoury M (2018) Microglia and Astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16:508-518.
[39] Guttikonda SR, Sikkema L, Tchieu J, Saurat N, Walsh RM, Harschnitz O, Ciceri G, Sneeboer M, Mazutis L, Setty M, Zumbo P, Betel D, de Witte LD, Pe'er D, Studer L (2021) Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nat Neurosci 24:343-354.
[40] Xie L, Zhang N, Zhang Q, Li C, Sandhu AF, Iii GW, Lin S, Lv P, Liu Y, Wu Q, Yu S (2020) Inflammatory factors and amyloid β-induced microglial polarization promote inflammatory crosstalk with astrocytes. Aging (Albany NY) 12:22538-22549.
[41] Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 14:5541-5554.
[42] Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, et al. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481-487.
[43] Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H (2016) Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci 36:577-89.
[44] Rostami J, Mothes T, Kolahdouzan M, Eriksson O, Moslem M, Bergström J, Ingelsson M, O'Callaghan P, Healy LM, Falk A, Erlandsson A (2021) Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates. J Neuroinflammation 18:124.
[45] Skaper SD, Facci L, Zusso M, Giusti P (2018) An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci 12:72.
[46] Chavda V, Singh K, Patel V, Mishra M, Mishra AK (2022) Neuronal glial crosstalk: specific and shared mechanisms in Alzheimer’s disease. Brain Sci 12:75.
[47] Kabir MT, Uddin MS, Zaman S, Rahman MS, Behl T, Ahmad A, Hafeez A, Perveen A, Ashraf GM (2021) Exploring the anti-neuroinflammatory potential of steroid and terpenoid-derived phytochemicals to combat Alzheimer’s disease. Curr Pharm Des 27:2635-2647.
[48] Chen S, Wang T, Yao J, Brinton RD (2020) Allopregnanolone promotes neuronal and oligodendrocyte differentiation in vitro and in vivo: therapeutic implication for Alzheimer's disease. Neurotherapeutics 17:1813-1824.
[49] Li L, Li R, Zacharek A, Wang F, Landschoot-Ward J, Chopp M, Chen J, Cui X (2020) ABCA1/ApoE/HDL signaling pathway facilitates myelination and oligodendrogenesis after stroke. Int J Mol Sci 21:4369.
[50] Nasrabady SE, Rizvi B, Goldman JE, Brickman AM (2018) White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun 6:22.
[51] Ferrer I, Aguiló García M, Carmona M, Andrés-Benito P, Torrejón-Escribano B, Garcia-Esparcia P, Del Rio JA (2019) Involvement of oligodendrocytes in tau seeding and spreading in tauopathies. Front Aging Neurosci 11:112.
[52] Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C, Simmons RK, Buckberry S, Vargas-Landin DB, Poppe D, Pflueger J, Lister R, Rackham OJL, Petretto E, Polo JM (2019) A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. Nat Neurosci 22(:2087-2097.
[53] Lorenzini L, Fernandez M, Baldassarro VA, Bighinati A, Giuliani A, Calzà L, Giardino L (2020) White matter and neuroprotection in Alzheimer's dementia. Molecules 25:503.
[54] Tajbakhsh A, Read M, Barreto GE, Ávila-Rodriguez M, Gheibi-Hayat SM, Sahebkar A (2021) Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: pathological mechanisms and therapeutic outlooks. Eur J Pharmacol 895:173873.
[55] Czapski GA, Strosznajder JB (2021) Glutamate and GABA in microglia-neuron cross-talk in Alzheimer's disease. Int J Mol Sci 22:11677.
[56] Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596-609.
[57] Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T (2020) The dual role of glutamatergic neurotransmission in Alzheimer's disease: from pathophysiology to pharmacotherapy. Int J Mol Sci 21:7452.
[58] Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57:1041-1048.
[59] Henstridge CM, Hyman BT, Spires-Jones TL (2019) Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 20:94-108.
[60] Spangenberg EE, Green KN (2017) Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain Behav Immun 61:1-11.
[61] De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603-615.
[62] Merlo S, Spampinato SF, Caruso GI, Sortino MA (2020) The ambiguous role of microglia in Aβ toxicity: chances for therapeutic intervention. Curr Neuropharmacol 18:446-455.
[63] Laurent C, Dorothée G, Hunot S, Martin E, Monnet Y, Duchamp M, Dong Y, Légeron FP, Leboucher A, Burnouf S, Faivre E, Carvalho K, Caillierez R, Zommer N, Demeyer D, Jouy N, Sazdovitch V, Schraen-Maschke S, Delarasse C, Buée L, et al. (2016) Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 140:184-200.
[64] Wu Q, Kong W, Wang S (2021) Peripheral blood biomarkers CXCL12 and TNFRSF13C associate with cerebrospinal fluid biomarkers and infiltrating immune cells in Alzheimer disease. J Mol Neurosci 71:1485-1494.
[65] Vacinova G, Vejražkova D, Rusina R, Holmerová I, Vaňková H, Jarolímová E, Včelák J, Bendlová B, Vaňková M (2021) Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimer's disease. Neural Regen Res 16:796-800.
[66] Fisher Y, Nemirovsky A, Baron R, Monsonego A (2010) T cells specifically targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer's disease. PLoS One 5:e10830.
[67] Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, Chen K, Lehallier B, Channappa D, De Los Santos MB, McBride A, Pluvinage J, Elahi F, Tam GK, Kim Y, Greicius M, Wagner AD, Aigner L, Galasko DR, Davis MM, et al. (2020) Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature 577:399-404.
[68] Unger MS, Li E, Scharnagl L, Poupardin R, Altendorfer B, Mrowetz H, Hutter-Paier B, Weiger TM, Heneka MT, Attems J, Aigner L (2020) CD8+ T-cells infiltrate Alzheimer's disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain Behav Immun 89:67-86.
本文完
[1] Tublin JM, Adelstein JM, Del Monte F, Combs CK, Wold LE (2019) Getting to the heart of Alzheimer disease. Circ Res 124:142-149.
[2] Doust YV, King AE, Ziebell JM (2021) Implications for microglial sex differences in tau-related neurodegenerative diseases. Neurobiol Aging 105:340-348.
[3] Franco R, Lillo A, Rivas-Santisteban R, Reyes-Resina I, Navarro G (2021) Microglial adenosine receptors: from preconditioning to modulating the M1/M2 balance in activated cells. Cells 10:1124.
[4] Ransohoff RM (2016) A polarizing question: do M1 and M2 microglia exist? Nat Neurosci 19:987-991.
[5] Devanney NA, Stewart AN, Gensel JC (2020) Microglia and macrophage metabolism in CNS injury and disease: The role of immunometabolism in neurodegeneration and neurotrauma. Exp Neurol 329:113310.
[6] Wright-Jin EC, Gutmann DH (2019) Microglia as dynamic cellular mediators of brain function. Trends Mol Med 25:967-979.
[7] Cornell J, Salinas S, Huang HY, Zhou M (2022) Microglia regulation of synaptic plasticity and learning and memory. Neural Regen Res 17(4):705-716.
[8] Chhor V, Le Charpentier T, Lebon S, Oré MV, Celador IL, Josserand J, Degos V, Jacotot E, Hagberg H, Sävman K, Mallard C, Gressens P, Fleiss B. Characterization of phenotype markers and neuronotoxic potential of polarised primary microglia in vitro (2013) Brain Behav Immun 32:70-85.
[9] Sarlus H, Heneka MT (2017) Microglia in Alzheimer's disease 127:3240-3249.
[10] Yao K, Zu HB (2019) Microglial polarization: novel therapeutic mechanism against Alzheimer's disease. Inflammopharmacology 28:95-110.
[11] Koh YC, Yang G, Lai CS, Weerawatanakorn M, Pan MH (2018) Chemopreventive effects of phytochemicals and medicines on M1/M2 polarized macrophage role in inflammation-related diseases. Int J Mol Sci 19:2208.
[12] McQuade A, Blurton-Jones M (2019) Microglia in Alzheimer’s disease: exploring how genetics and phenotype influence risk. J Mol Biol 431:1805-1817.
[13] Ozben T, Ozben S (2019) Neuro-inflammation and anti-inflammatory treatment options for Alzheimer's disease. Clin Biochem 72:87-89.
[14] Guillot-Sestier MV, Doty KR, Gate D, Rodriguez J Jr, Leung BP, Rezai-Zadeh K, Town T (2015) Il10 deficiency rebalances innate immunity to mitigate Alzheimer-like pathology. Neuron 85:534-548.
[15] Weinhard L, di Bartolomei G, Bolasco G, Machado P, Schieber NL, Neniskyte U, Exiga M, Vadisiute A, Raggioli A, Schertel A, Schwab Y, Gross CT (2018) Microglia remodel synapses by presynaptic trogocytosis and spine head filopodia induction. Nat Commun 9:1228.
[16] Li Q, Barres BA (2018) Microglia and macrophages in brain homeostasis and disease. Nat Rev Immunol 18:225-242.
[17] Lau SF, Fu AKY, Ip NY (2021) Cytokine signaling convergence regulates the microglial state transition in Alzheimer's disease. Cell Mol Life Sci 78:4703-4712.
[18] Das R, Chinnathambi S (2020) Actin-mediated microglial chemotaxis via g-protein coupled purinergic receptor in Alzheimer’s disease. Neuroscience 448:325-336.
[19] Huang Y, Happonen KE, Burrola PG, O'Connor C, Hah N, Huang L, Nimmerjahn A, Lemke G (2021) Microglia use TAM receptors to detect and engulf amyloid β plaques. Nat Immunol 22:586-594.
[20] Zhang X, Ye P, Wang D, Liu Y, Cao L, Wang Y, Xu Y, Zhu C (2019) Involvement of rhoa/rock signaling in aβ-induced chemotaxis, cytotoxicity and inflammatory response of microglial BV2 cells. Cell Mol Neurobiol 39:637-650.
[21] Yu T, Lin Y, Xu Y, Dou Y, Wang F, Quan H, Zhao Y, Liu X (2020) Repressor element 1 silencing transcription factor (REST) governs microglia-like BV2 cell migration via progranulin (PGRN). Neural Plast 2020:8855822.
[22] Chidambaram H, Das R, Chinnathambi S (2022) G-protein coupled purinergic P2Y12 receptor interacts and internalizes TauRD-mediated by membrane-associated actin cytoskeleton remodeling in microglia. Eur J Cell Biol 101:151201.
[23] Kreutzberg GW (1996) Microglia: a sensor for pathological events in the CNS. Trends Neurosci 19:312-318.
[24] Ulrich JD, Ulland TK, Mahan TE, Nyström S, Nilsson KP, Song WM, Zhou Y, Reinartz M, Choi S, Jiang H, Stewart FR, Anderson E, Wang Y, Colonna M, Holtzman DM (2018) ApoE facilitates the microglial response to amyloid plaque pathology. J Exp Med 215:1047-1058.
[25] Salcman B, Affleck K, Bulfone-Paus S (2021) P2X receptor-dependent modulation of mast cell and glial cell activities in neuroinflammation. Cells 10:2282.
[26] Domingues C, da Cruz E Silva OAB, Henriques AG (2017) Impact of cytokines and chemokines on Alzheimer’s disease neuropathological hallmarks. Curr Alzheimer Res 14:870-882.
[27] Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R, Ulland TK, David E, Baruch K, Lara-Astaiso D, Toth B, Itzkovitz S, Colonna M, Schwartz M, Amit I (2017) A unique microglia type associated with restricting development of Alzheimer’s disease. Cell 169:1276-1290.e17.
[28] Podleśny-Drabiniok A, Marcora E, Goate AM (2020) Microglial phagocytosis: a disease-associated process emerging from Alzheimer’s disease genetics. Trends Neurosci 43:965-979
[29] Bolmont T, Haiss F, Eicke D, Radde R, Mathis CA, Klunk WE, Kohsaka S, Jucker M, Calhoun ME (2008) Dynamics of the microglial/amyloid interaction indicate a role in plaque maintenance. J Neurosci 28:4283-92.
[30] Doran AC, Yurdagul A Jr, Tabas I (2020) Efferocytosis in health and disease. Nat Rev Immunol 20:254-267.
[31] Anwar S, Rivest S (2020) Alzheimer's disease: microglia targets and their modulation to promote amyloid phagocytosis and mitigate neuroinflammation. Expert Opin Ther Targets 24:331-344.
[32] Wang Y, Ulland TK, Ulrich JD, Song W, Tzaferis JA, Hole JT, Yuan P, Mahan TE, Shi Y, Gilfillan S, Cella M, Grutzendler J, DeMattos RB, Cirrito JR, Holtzman DM, Colonna M (2016) TREM2-mediated early microglial response limits diffusion and toxicity of amyloid plaques. J Exp Med 213:667-675.
[33] Carosi JM, Sargeant TJ (2019) Rapamycin and Alzheimer disease: a double-edged sword?. Autophagy15:1460-1462.
[34] van Olst L, Verhaege D, Franssen M, Kamermans A, Roucourt B, Carmans S, Ytebrouck E, van der Pol SMA, Wever D, Popovic M, Vandenbroucke RE, Sobrino T, Schouten M, de Vries HE (2020) Microglial activation arises after aggregation of phosphorylated-tau in a neuron-specific P301S tauopathy mouse model. Neurobiol Aging 89:89-98.
[35] Rajendran L, Paolicelli RC (2018) Microglia-mediated synapse loss in Alzheimer’s disease. J Neurosci 38:2911-2919.
[36] Delpech JC, Herron S, Botros MB, Ikezu T (2019) Neuroimmune crosstalk through extracellular vesicles in health and disease. Trends Neurosci 42:361-372.
[37] Lana D, Ugolini F, Nosi D, Wenk GL, Giovannini MG (2021) The emerging role of the interplay among astrocytes, microglia, and neurons in the hippocampus in health and disease. Front Aging Neurosci 13:651973.
[38] Fakhoury M (2018) Microglia and Astrocytes in Alzheimer’s disease: implications for therapy. Curr Neuropharmacol 16:508-518.
[39] Guttikonda SR, Sikkema L, Tchieu J, Saurat N, Walsh RM, Harschnitz O, Ciceri G, Sneeboer M, Mazutis L, Setty M, Zumbo P, Betel D, de Witte LD, Pe'er D, Studer L (2021) Fully defined human pluripotent stem cell-derived microglia and tri-culture system model C3 production in Alzheimer's disease. Nat Neurosci 24:343-354.
[40] Xie L, Zhang N, Zhang Q, Li C, Sandhu AF, Iii GW, Lin S, Lv P, Liu Y, Wu Q, Yu S (2020) Inflammatory factors and amyloid β-induced microglial polarization promote inflammatory crosstalk with astrocytes. Aging (Albany NY) 12:22538-22549.
[41] Tiwari S, Atluri V, Kaushik A, Yndart A, Nair M (2019) Alzheimer's disease: pathogenesis, diagnostics, and therapeutics. Int J Nanomedicine 14:5541-5554.
[42] Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, Wilton DK, Frouin A, Napier BA, Panicker N, Kumar M, Buckwalter MS, Rowitch DH, Dawson VL, Dawson TM, Stevens B, et al. (2017) Neurotoxic reactive astrocytes are induced by activated microglia. Nature 541:481-487.
[43] Lian H, Litvinchuk A, Chiang AC, Aithmitti N, Jankowsky JL, Zheng H (2016) Astrocyte-microglia cross talk through complement activation modulates amyloid pathology in mouse models of Alzheimer’s disease. J Neurosci 36:577-89.
[44] Rostami J, Mothes T, Kolahdouzan M, Eriksson O, Moslem M, Bergström J, Ingelsson M, O'Callaghan P, Healy LM, Falk A, Erlandsson A (2021) Crosstalk between astrocytes and microglia results in increased degradation of α-synuclein and amyloid-β aggregates. J Neuroinflammation 18:124.
[45] Skaper SD, Facci L, Zusso M, Giusti P (2018) An inflammation-centric view of neurological disease: beyond the neuron. Front Cell Neurosci 12:72.
[46] Chavda V, Singh K, Patel V, Mishra M, Mishra AK (2022) Neuronal glial crosstalk: specific and shared mechanisms in Alzheimer’s disease. Brain Sci 12:75.
[47] Kabir MT, Uddin MS, Zaman S, Rahman MS, Behl T, Ahmad A, Hafeez A, Perveen A, Ashraf GM (2021) Exploring the anti-neuroinflammatory potential of steroid and terpenoid-derived phytochemicals to combat Alzheimer’s disease. Curr Pharm Des 27:2635-2647.
[48] Chen S, Wang T, Yao J, Brinton RD (2020) Allopregnanolone promotes neuronal and oligodendrocyte differentiation in vitro and in vivo: therapeutic implication for Alzheimer's disease. Neurotherapeutics 17:1813-1824.
[49] Li L, Li R, Zacharek A, Wang F, Landschoot-Ward J, Chopp M, Chen J, Cui X (2020) ABCA1/ApoE/HDL signaling pathway facilitates myelination and oligodendrogenesis after stroke. Int J Mol Sci 21:4369.
[50] Nasrabady SE, Rizvi B, Goldman JE, Brickman AM (2018) White matter changes in Alzheimer's disease: a focus on myelin and oligodendrocytes. Acta Neuropathol Commun 6:22.
[51] Ferrer I, Aguiló García M, Carmona M, Andrés-Benito P, Torrejón-Escribano B, Garcia-Esparcia P, Del Rio JA (2019) Involvement of oligodendrocytes in tau seeding and spreading in tauopathies. Front Aging Neurosci 11:112.
[52] Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C, Simmons RK, Buckberry S, Vargas-Landin DB, Poppe D, Pflueger J, Lister R, Rackham OJL, Petretto E, Polo JM (2019) A single-cell atlas of entorhinal cortex from individuals with Alzheimer's disease reveals cell-type-specific gene expression regulation. Nat Neurosci 22(:2087-2097.
[53] Lorenzini L, Fernandez M, Baldassarro VA, Bighinati A, Giuliani A, Calzà L, Giardino L (2020) White matter and neuroprotection in Alzheimer's dementia. Molecules 25:503.
[54] Tajbakhsh A, Read M, Barreto GE, Ávila-Rodriguez M, Gheibi-Hayat SM, Sahebkar A (2021) Apoptotic neurons and amyloid-beta clearance by phagocytosis in Alzheimer's disease: pathological mechanisms and therapeutic outlooks. Eur J Pharmacol 895:173873.
[55] Czapski GA, Strosznajder JB (2021) Glutamate and GABA in microglia-neuron cross-talk in Alzheimer's disease. Int J Mol Sci 22:11677.
[56] Parkhurst CN, Yang G, Ninan I, Savas JN, Yates JR 3rd, Lafaille JJ, Hempstead BL, Littman DR, Gan WB (2013) Microglia promote learning-dependent synapse formation through brain-derived neurotrophic factor. Cell 155:1596-609.
[57] Bukke VN, Archana M, Villani R, Romano AD, Wawrzyniak A, Balawender K, Orkisz S, Beggiato S, Serviddio G, Cassano T (2020) The dual role of glutamatergic neurotransmission in Alzheimer's disease: from pathophysiology to pharmacotherapy. Int J Mol Sci 21:7452.
[58] Wang R, Reddy PH (2017) Role of glutamate and NMDA receptors in Alzheimer’s disease. J Alzheimers Dis 57:1041-1048.
[59] Henstridge CM, Hyman BT, Spires-Jones TL (2019) Beyond the neuron-cellular interactions early in Alzheimer disease pathogenesis. Nat Rev Neurosci 20:94-108.
[60] Spangenberg EE, Green KN (2017) Inflammation in Alzheimer's disease: Lessons learned from microglia-depletion models. Brain Behav Immun 61:1-11.
[61] De Strooper B, Karran E (2016) The cellular phase of Alzheimer’s disease. Cell 164:603-615.
[62] Merlo S, Spampinato SF, Caruso GI, Sortino MA (2020) The ambiguous role of microglia in Aβ toxicity: chances for therapeutic intervention. Curr Neuropharmacol 18:446-455.
[63] Laurent C, Dorothée G, Hunot S, Martin E, Monnet Y, Duchamp M, Dong Y, Légeron FP, Leboucher A, Burnouf S, Faivre E, Carvalho K, Caillierez R, Zommer N, Demeyer D, Jouy N, Sazdovitch V, Schraen-Maschke S, Delarasse C, Buée L, et al. (2016) Hippocampal T cell infiltration promotes neuroinflammation and cognitive decline in a mouse model of tauopathy. Brain 140:184-200.
[64] Wu Q, Kong W, Wang S (2021) Peripheral blood biomarkers CXCL12 and TNFRSF13C associate with cerebrospinal fluid biomarkers and infiltrating immune cells in Alzheimer disease. J Mol Neurosci 71:1485-1494.
[65] Vacinova G, Vejražkova D, Rusina R, Holmerová I, Vaňková H, Jarolímová E, Včelák J, Bendlová B, Vaňková M (2021) Regulated upon activation, normal T cell expressed and secreted (RANTES) levels in the peripheral blood of patients with Alzheimer's disease. Neural Regen Res 16:796-800.
[66] Fisher Y, Nemirovsky A, Baron R, Monsonego A (2010) T cells specifically targeted to amyloid plaques enhance plaque clearance in a mouse model of Alzheimer's disease. PLoS One 5:e10830.
[67] Gate D, Saligrama N, Leventhal O, Yang AC, Unger MS, Middeldorp J, Chen K, Lehallier B, Channappa D, De Los Santos MB, McBride A, Pluvinage J, Elahi F, Tam GK, Kim Y, Greicius M, Wagner AD, Aigner L, Galasko DR, Davis MM, et al. (2020) Clonally expanded CD8 T cells patrol the cerebrospinal fluid in Alzheimer's disease. Nature 577:399-404.
[68] Unger MS, Li E, Scharnagl L, Poupardin R, Altendorfer B, Mrowetz H, Hutter-Paier B, Weiger TM, Heneka MT, Attems J, Aigner L (2020) CD8+ T-cells infiltrate Alzheimer's disease brains and regulate neuronal- and synapse-related gene expression in APP-PS1 transgenic mice. Brain Behav Immun 89:67-86.
本文完