总而言之,研究构建了迄今为止最全面、最详尽的衰老多层级表观遗传全景图,阐明了生理性衰老和遗传性早衰症的一些共通性与独特特征,发现了衰老的新型生物标志物,并揭示了细胞衰老中表观遗传重塑的新机制。可以预见,未来对衰老表观遗传的研究将进一步向染色质三维结构与功能之间的关系进行拓展。尤其是随着表观遗传编辑技术的快速发展,人们可以对表观基因组进行特定地扰动,从而区分染色质三维结构状态与细胞功能之间的因果关系。人们也应该广泛探索在更多不同的细胞类型和病理生理状态下衰老所引起的表观遗传变化,从而发现条件特异性的衰老调控机制。更进一步,系统地比较衰老和细胞部分重编程时表观遗传的变化动态,将有助于人们发现逆转衰老进程的关键检查点,为设计衰老相关疾病的潜在干预策略提供依据。参考文献:Chandra, T., et al. (2015) Global reorganization of the nuclear landscape in senescent cells. Cell Rep 10 (4), 471-83.Hernandez-Segura, A., et al. (2018) Hallmarks of Cellular Senescence. Trends Cell Biol 28, 436-453.Liu, Z., et al. (2022) Large-scale chromatin reorganization reactivates placenta-specific genes that drive cellular aging. Dev Cell 57, 1-22.Lopez-Otin, C., et al. (2013). The hallmarks of aging. Cell 153, 1194-1217.Lopez-Otin, C., and Kroemer, G. (2021). Hallmarks of Health. Cell 184, 33-63Sadaie, M. et al. (2013) Redistribution of the LaminB1 genomic binding profile affects rearrangement of heterochromatic domains and SAHF formation during senescence. Genes Dev 27, 1800-1808.Scaffidi, P., and Misteli, T. (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10 (4), 452-9.Zabransky, D.J., et al. (2022). Shared genetic and epigenetic changes link aging and cancer. Trends Cell Biol 32 (4), 338-350.Zhang, W., et al. (2020) The ageing epigenome and its rejuvenation. Nat Rev Mol Cell Biol 21 (3), 137-150.