2017年中考压轴真题详细分类系列(28)——与相似相关的问题(2)
声明:“初中数学延伸课堂”的所有文章,版权所有。欢迎并感谢朋友们分享和转发,但未经许可,不得在任何公共场合使用、开发及转载,违者必究!
建议阅读:如何快速查找到“初中数学延伸课堂”的相关文章(直接点击打开).
打开微信,点击“发现”,点击“搜索”,再点击“资讯(或文章)(这一步骤最重要)“,在跳出的对话框中输入“初中数学延伸课堂”,然后点击“初中数学延伸课堂”,继续输入“关键词”(如:福州),再点击“搜索”,就会得到所有标题或内容中含”福州“的文章,类似于“百度”搜索.
几何画板教学视频免费教程(622分钟):关注公众号(扫描上述二维码)后,输入“1”就可得到学习地址(需手机注册——免费)
10.(2017·湘潭倒一)如图,动点M在以O为圆心,AB为直径的半圆弧上运动(点M不与点A、B 及弧AB 的中点F 重合),连接OM.过点M 作ME⊥AB于点E,以BE为边在半圆同侧作正方形BCDE,过点M作⊙O的切线交射线DC于点N,连接BM、BN.
分别判断(1)中的三个结论是否保持不变?如有变化,请直接写出正确的结论.(均不必说明理由)
【详细解析】请点击“进入画板解析”
11. (2017上海)如图,已知☉O的半径长为1,AB、AC是☉O的两条弦,且AB=AC,BO的延长线交AC于点D,联结OA、OC.
(1)求证:△OAD∽△ABD;
(2)当△OCD是直角三角形时,求B、C两点的距离;
(3)记△AOB、△AOD、△COD的面积分别为S1、S2、S3,如果S2是S1和S3的比例中项,求OD的长.
【详细解析】请点击“进入画板解析”
12.(2017四川德阳,23,11分)
如图,已知AB、CD为⊙O的两条直线,DF为切线,过AO上一点N作NM⊥DF于M,连结DN并延长交⊙O于点E,连结CE.
(1)求证:△DMN∽△CED;
(2)设G为点E关于AB对称点,连结GD、GN,如果∠DNO=45°,⊙O的半径为3,求DN2+GN2的值.
【详细解析】请点击“进入画板解析”
13. (2017·山东滨州倒二)如图,点E是△ABC的内心,AE的延长线交BC于点F,交△ABC的外接圆⊙O于点D,连接BD,过点D作直线DM,使∠BDM=∠DAC.
(1)求证:直线DM是⊙O的切线;
(2)求证:DE2=DF•DA.
【详细解析】请点击“进入画板解析”
14. (甘肃·天水倒二)△ABC和△DEF是两个全等的等腰直角三角形,∠BAC=∠EDF=90°,△DEF的顶点E与△ABC的斜边BC的中点重合,将△DEF绕点E旋转,旋转过程中,线段DE与线段AB相交于点P,线段EF与射线CA相交于点Q.
(1)如图①,当点Q在线段AC上,且AP=AQ时,求证:△BPE≌△CQE;
(2)如图②,当点Q在线段CA的延长线上时,求证:△BPE∽△CEQ;并求当BP=2,CQ=9时BC的长.
【详细解析】请点击“进入画板解析”
15.(2017·福建倒二) 如图,矩形ABCD中,AB=6,AD=8,P、E分别是线段AC、BC上的点,且四边形PEFD为矩形.
(1)若△PCD是等腰三角形时,求AP的长;
(2)若AP=根号2,求CF的长.
【详细解析】请点击“进入画板解析”
16. (2017·邵阳)如图1所示,在△ABC中,点O是AC上一点,过点O的直线与AB,BC的延长线分别相交于点M,N.
【问题引入】
温馨提示:过点A作MN的平行线交BN的延长线于点G.
【详细解析】请点击“进入画板解析”
17. (2017•湖北鄂州24题)已知,抛物线y=a x2+bx+3(a<0)与x轴交于A(3,0)、B两点,与y轴交于点C,抛物线的对称轴是直线x=1,D为抛物线的顶点,点E在y轴C点的上方,且CE=1/2.
(1)求抛物线的解析式及顶点D的坐标;
(2)求证:直线DE是△ACD外接圆的切线;
(3)在直线AC上方的抛物线上找一点P,使S△ACP=1/2S△ACD ,求点P的坐标;
(4)在坐标轴上找一点M,使以点B、C、M为顶点的三角形与△ACD相似,直接写出点M的坐标.
【详细解析】请点击“进入画板解析”
18. (2017•湖南郴州25)如图,已知抛物线y=ax2+x+c与x轴交于A,B两点,与y轴交于丁C,且A(2,0),C(0,﹣4),直线l:y=﹣x﹣4与x轴交于点D,点P是抛物线y=ax2+x+c上的一动点,过点P作PE⊥x轴,垂足为E,交直线l于点F.
(1)试求该抛物线表达式;
(2)如图(1),过点P在第三象限,四边形PCOF是平行四边形,求P点的坐标;
(3)如图(2),过点P作PH⊥y轴,垂足为H,连接AC.
①求证:△ACD是直角三角形;
②试问当P点横坐标为何值时,使得以点P、C、H为顶点的三角形与△ACD相似?
【详细解析】请点击“进入画板解析”
(别忘了给作者一个鼓励,点个赞哦!)
特别说明:进入公众号,回复“1,2,3…14,888”中的任意一个”数“,可查找到相应资料.
强烈推荐:
《顶尖中考微专题》例、习题视频讲解(共1487分钟)—与书配套视频