查看原文
其他

柏亮,陈小辉 | 数字经济如何影响SO2排放?——理论解读与实证检验

东北财经大学学报 财经问题研究与东财学报 2021-09-15

数据是新的生产要素,是基础性资源和战略性资源,也是重要生产力。

要构建以数据为关键要素的数字经济。

——习近平


《东北财经大学学报》优先出版文章
数字经济专题”
(最终内容以纸质版为准)
[引用格式]:柏亮,陈小辉.数字经济如何影响SO2排放?——理论解读与实证检验[J].东北财经大学学报,2020,(05).

数字经济如何影响SO2排放?

——理论解读与实证检验


柏亮1,2,陈小辉3


(1.北京零壹财经 零壹智库,北京 100000;
2.数字资产研究院,北京 100000;
3.四川大学 经济学院,四川 成都 610064)

作者简介:

柏 亮(1981-),男,湖北咸丰人,零壹财经、零壹智库创始人,数字资产研究院常务副院长,中国投资协会数字资产研究中心常务副秘书长。主要从事金融科技、数字经济等方面的研究。E-mail:bailiang@01caijing.com


陈小辉(通讯作者)(1974),男,四川成都人,博士研究生,主要从事数字经济、金融科技和金融监管等方面的研究。
E-mail:m_cxh@163.com
摘   要:本文将数字经济的发展水平引入代表性工业企业的生产函数和污染因子,在理论分析的基础上,基于2012—2018年中国31个省市区平衡面板数据,采用时间和个体双向固定效应模型,研究数字经济发展水平与二氧化硫(SO2)排放量之间的关系。研究结果表明,数字经济发展水平与SO2排放量之间为倒U型非线性关系。数字经济发展水平存在拐点,低于拐点时,数据经济发展水平的提升将加大SO2排放量;超过拐点后,数据经济发展水平的提升将降低SO2排放量。进一步研究发现,财政分权可拉高拐点。关键词:数字经济;SO2排放量;财政分权;非线性

一、问题的提出

2008年全球金融危机后,人工智能、区块链、云计算和大数据等技术与经济的深度融合产生了数字经济。数字经济的影响广泛而深远,已成为新时代中国经济高质量发展的重要驱动力量[1]。2015—2020年,习近平总书记每年均强调要发展数字经济。2020年的《政府工作报告》中明确提出要“打造数字经济新优势”。在宏观层面,数字经济对第一二三产业均有深度渗透[2]在微观层面,数字经济对企业生产活动有显著影响[3],使企业的生产过程发生变革[4]当然,数字经济也会给工业企业的生产过程带来变革。工业企业在生产过程中通常会排放二氧化硫(以下简称SO2),那么,数字经济在变革工业企业生产过程时,是否会对工业企业的SO2排放产生影响?如何会,究竟是何种影响?
前述问题是环境污染的影响因素问题。关于环境污染的影响因素,国内外文献认为,其一,财政分权会加剧环境污染[5-6],地方政府的经济竞争会加剧环境污染[7-8],而政府规制则能抑制环境污染[9]。其二,信贷资源的配置与污染排放量相关[10],金融发展有利于缓解环境污染[11],也有研究认为,金融发展与环境污染之间为非线性关系[12]。其三,税负与环境污染负相关[13],增加实际税率可以缓解环境污染[14],产业聚集与环境污染之间为倒U型关系[15]
总体来看,国内外文献就环境污染的影响因素进行了大量有益研究。但对数字经济是否影响、如何影响工业SO2排放量的问题尚缺乏研究。在数字经济已成为中国经济高质量发展抓手、党的十九大要求“持续实施大气污染防治行动、打赢蓝天保卫战”的情况下,前述问题的研究对助推中国经济高质量发展具有重要意义。为此,本文基于Stokey[16]模型,将数字经济发展水平引入代表性工业企业的生产函数和污染因子,基于2012—2018年中国31个省市区平衡面板数据进行实证检验,研究“数字经济发展水平与工业SO2排放量”之间的关系问题。
本文可能的创新点在于:在理论分析基础上,基于2012—2018年中国31个省市区平衡面板数据,研究了数字经济对工业SO2排放量的溢出效应;本文基于CRITIC方法构建的数字经济发展指数,从理论解读和实证检验两个维度研究数字经济的影响;探讨了财政分权对数字经济发展水平拐点的影响,丰富了财政分权领域的文献。

二、理论研究

在数字经济大潮中,工业企业正在基于人工智能、区块链、云计算和大数据等技术进行数字化转型,而数字化水平的提升将可能影响工业企业的生产率和污染因子,从而影响工业SO2排放。
(一)模型设定

为构建理论分析框架,本文借鉴戴觅等[17]、宫旭红和曹云祥[18]、肖兴志等[19]文献,将代表性工业企业的生产函数设定为Cobb-Douglas生产函数,即q表示产量、A表示综合技术水平、N表示投入的劳动、K表示投入的资本,其中,。代表性工业企业在生产过程中将排放SO2,借鉴Stokey[16]的做法,SO2排放量w为产出q和污染因子z的函数。参照盛鹏飞[20]的做法,将污染函数简记为w=qz。在数字经济发展水平驱动下,代表性工业企业实施数字化转型。代表性工业企业的数字化水平与数字经济发展水平之间的关系为为代表性企业的数字化倾向,F为数字经济发展水平。数字化可优化生产要素的配置、提高全要素生产率[21],因而在考虑数字经济发展水平会对企业数字化水平、全要素生产率产生影响的情况下,代表性工业企业的生产函数为其中An为代表性工业企业实施数字化转型前的综合技术水平(全要素生产率),为代表性工业企业全要素生产率的边际提升倾向,得到

  此外,信息通讯技术(Information and Communication Technology,ICT)是数字经济的基础。ICT的广泛应用即为信息化[22],信息化可改进企业的生产流程,提高企业的生产效率[23-24],生产效率的提高可能提升代表性工业企业的污染排放因子。在考虑数字经济发展水平影响的情况下,设污染因子为代表性工业企业实施数字化转型前的初始污染因子,为代表性工业企业污染因子的提升倾向。

   代表性工业企业所在的市场为完全竞争市场,为价格接受者,产品价格为p。设产品的单位变动成本为b,固定成本为代表性工业企业对SO2进行处理后排放,设处理成本为单位变动成本。综上,代表性工业企业的利润根据上述假设,代表性工业企业的目标函数和约束条件如式(1)所示:
             (1)

(二)模型分析

代表性工业企业通过选择最佳数字化水平以实现利润最大化,式(1)对L求偏导,可得式(2):

                                             (2)

令式(2)为零,可得代表性工业企业的最优数字化水平满足式(3):

                                               (3)

式(3)为代表性工业企业实现利润最大化时最优数字化水平的一阶条件,经整理可得代表性工业企业选择最优数字化水平时产出为式(4):

                                       (4)

式(4)两边分别z乘可得代表性工业企业在选择最优数字化水平时SO2排放量为式(5):

                                       (5)

从式(5)可知,SO2排放量是代表性工业企业数字化水平的函数,而数字化水平是数字经济发展水平的函数。因此,SO2排放量是数字经济发展水平的函数。式(5)对求偏导,可得式(6):

                                       (6)

令式(6)为零,可得式(7):

                                                          (7)

式(6)再对F求偏导,可得式(8):

                                                      (8)

   由式(1)可知,得式(9):

                                                                  (9)
综合式(7)和式(9)可知,F0为SO2排放量w的最大值点,当数字经济发展水平小于F0时,随着数字经济发展水平的提升,SO2排放量增加;当数字经济发展水平大于F0时,随着数字经济发展水平的提升,SO2排放量减少。即SO2排放量与数字经济发展水平之间为倒U型非线性关系。由此,提出研究假说。
假说:SO2排放量与数字经济发展水平之间为倒U型非线性关系,随着数字经济发展水平的提升,SO2排放量呈先上升后下降趋势。
(三)作用机制
SO2排放量与数字经济发展水平之间之所以为倒U关系,其作用机制可从模型中分析得出。将式(6)写成微分形式可得式(10):
             (10)

    式(10)右边第一项为正,其中可视为数字经济发展水平提升dF时,代表性工业企业全要素生产率的提升幅度;则为全要素生产率增量带来的产出增加量;p-b为代表性工业企业产品价格与变动成本之差,即单位产出给代表性工业企业带来的收益。因此,表示数字经济提升代表性工业企业全要素生产率后增加的利润。而可视为代表性工业企业受全要素生产率提升带来利润增加的影响——增加的SO2排放量。式(10)右边第一项可视为利润激励效应。

   式(10)右边第二项为负,同理,为全要素生产率增量带来的产出增加量。由前提假设可知,为产出量增加时带来的SO2排放量的增量,排放量增量产生的处置成本。因此,视为数字经济发展水平在增加产出量的同时,给代表性工业企业带来的SO2处置成本。可视为增量处置成本减少的SO2排放量。因此,式(10)右边第二项可视为成本抑制效应。

数字经济发展水平对代表性工业企业SO2排放量的影响由利润激励效应和成本抑制效应构成,利润激励效应增加SO2排放量,成本抑制效应则降低SO2排放量。由式(9)可知,利润激励效应前期占主导,增加SO2排放量;后期成本抑制效应占主导,减少SO2排放量(如图1所示)。

图1 数字经济发展水平对SO2排放的作用机制

三、研究设计

(一)计量模型设定
为检验研究假说,本文借鉴席鹏辉等[25]和张明志等[26]等文献参照杜龙政等[27]胡望斌等[28]检验正U或倒U型关系的做法,构建实证模型式(11):
              (11)

   其中,wgasit为第i个省市区第t年的工业SO2排放量,为截距项,为第i个省市区的个体效应,为第t年的年度效应,为随机误差项。decoit为第i个省市区第t年的数字经济发展水平,为其系数。deco2itdecoit的平方项,为其系数。若显著小于零,则数字经济发展水平与SO2排放量之间为倒U型关系,若同时显著大于零,则数字经济发展水平的拐点大于零。Xit为控制变量。

(二)样本选择与数据来源
本文采用CRITIC方法构造数字经济发展水平指数进行实证检验。鉴于计算指数的原始数据最早为2012年,其他数据最新为2018年。本文基于2012—2018年中国31个省市区的数据进行检验。
本文采用爬虫技术采集了计算数字经济发展水平指数所需的上市数字科技企业市值,以及人工智能、区块链、云计算和大数据等四项技术的专利申请数据。工业SO2排放量和工业固定废物排放量来源于《中国环境统计年鉴》,其他数据和计算指数的原始数据来源于中国人民银行、国家统计局和Wind数据库,陆地面积来源于百度百科。为消除异常值的影响,本文对连续变量进行了上下1%的Winsorize缩尾处理。此外,对2016—2018年的工业SO2排放量和工业固体废物排放量进行了线性插值处理。
(三)变量说明

参照现有文献,设计被解释变量、关键解释变量和控制变量,如表1所示。

表 1  全文变量定义

⒈ 被解释变量
被解释变量为SO2排放量,设计被解释变量wgas,参照聂飞和刘海云[29]、席鹏辉等[25]、张红凤等[30]的做法,取值为Ln(工业SO2排放量/总人口)。另外,以Ln(工业固体废物排放量/总人口)计算wgasr做稳健性检验。
⒉ 关键解释变量
数字经济发展水平(deco):目前尚无表征各省市区数字经济发展水平的指标。本文基于数字经济的数字产业化和产业数字化两个维度,考虑数据可获得性,从数字经济基础发展水平、用户数字化水平、交易数字化水平、企业数字化水平、数字经济资本化水平和数字科技技术创新水平等六个维度构造各省市数字经济发展水平指数。前四个维度的原始数据来自于国家统计局,数字经济资本化水平和数字科技技术创新水平两个维度的原始数据,本文采用爬虫技术获取。具体而言,以信息传输计算机服务和软件业全社会固定资产投资、软件业务收入衡量数字经济基础发展水平,以电信业务总量和移动电话普及率衡量用户数字化水平,以有电子商务交易活动的企业数、电子商务销售额和电子商务采购额衡量交易数字化水平,以域名数、网站数和网页数衡量企业数字化水平,以上市数字科技企业市值衡量数字经济资本化水平,以人工智能、区块链、云计算和大数据专利申请数量衡量数字科技技术创新水平。
以“信息传输计算机服务和软件业全社会固定资产投资”和“软件业务收入”为初始指标,计算“数字经济基础发展水平”;以“电信业务总量”和“移动电话普及率”为初始指标,计算“用户数字化水平”;以“有电子商务交易活动的企业数”“电子商务销售额”和“电子商务采购额”为初始指标,计算“交易数字化水平”;以“域名数”“网站数”和“网页数”为初始指标,计算“企业数字化水平”;以“上市数字科技企业市值”为初始指标,计算“数字经济资本化水平”;以人工智能、区块链、云计算和大数据等四项技术的专利申请数量为初始指标,计算“数字科技技术创新水平”。以“数字经济基础发展水平”“用户数字化水平”“交易数字化水平”“企业数字化水平”“数字经济资本化水平”和“数字科技技术创新水平”为指标,计算数字经济发展水平。

   在指标权重方面,CRITIC方法确定的权重更为精准[35]。本文采用CRITIC方法生成指标权重,为指标i的标准差rij为指标i与指标j的相关系数。在计算出各省市区数字经济发展水平指数decoo后,为消除异方差的干扰,对其取对数得到关键解释变量deco

⒊ 控制变量
本文主要参照丁鹏程等[31]、盛鹏飞[20]、席鹏辉等[25]和张明志等[26]的做法,设计了经济发展水平及其二次项、财政分权、人口增长率、教育水平及其二次项、城镇化率及其二次项、产业结构水平等控制变量。此外,为进行稳健性检验,还设计了人口密度和金融分权两个控制变量。

四、实证分析与稳健性检验

(一)描述性统计
表2为主要变量描述性统计。SO2排放量wgas的均值为2.2220,最小值仅-3.0778,最大值达4.0838,在省际层面与中国发展不平衡的基本国情相符。最小值为负数是因为取对数所致。数字经济发展水平的均值为6.4754,最小值为5.2969,最大值8.5251。观测样本为7年数据,观测值为217个。

表2   全文变量描述性统计

(二)基准回归
对模型式(11)采用固定效应FE和随机效应RE进行估计。本文先进行豪斯曼检验,p值为0.0015,但Stata15.1报告“V_b-V_B”矩阵非正定,较难判断。而固定效应能克服遗漏变量等造成的偏误,故本文以固定效应进行估计。基于固定效应,采用逐步增加控制变量的方法估计模型式(11),结果如表3所示。另外,鉴于数字经济发展水平可能具有内生性,将其滞后一期;借鉴环境污染相关文献的做法,所有控制变量也滞后一期。表3中均控制了年度效应和个体效应。
⒈ 研究假说检验情况
表3模型(1)—(5)中,关键解释变量二次项L.deco2的系数均在1%或5%显著性水平下显著为负,而一次性L.deco的系数均在5%或10%显著性水平下显著为正。即数字经济发展水平与SO2排放量之间为倒U型非线性关系,SO2排放量随着数字经济发展水平的增加先上升后下降。因此,研究假说成立。
按模型(5)计算,数字经济发展水平的拐点为5.2696,即当数字经济发展水平低于5.2696时,数字经济发展水平的利润激励效应占主导,工业企业将增加产出从而增加SO2排放量;当大于5.2696时,数字经济发展水平的成本抑制效应占主导,数字经济的发展将降低SO2排放量。从全国平均水平看,数字经济发展水平的均值为6.4754,已越过了拐点。因此,在全国平均水平上,中国数字经济已开始抑制SO2排放。
⒉ 其他信息
控制变量方面,从模型(5)可知:第一,经济发展水平二次项L.ppgdp2的系数在1%显著性水平下显著为负,一次项L.ppgdp的系数在1%显著性水平下显著为正,经济发展水平与SO2排放量之间为倒U型非线性关系,与Friedl和Getzner[36]李鹏涛[37]的结论一致。第二,教育水平的二次项L.edu2系数在1%显著性水平下显著为正,一次项L.edu的系数在1%显著性水平下显著为负,即教育水平与SO2排放量之间为正U型关系,与席鹏辉等[25]的结论基本一致。第三,城镇化率的二次项L.urbrate2的系数在1%显著性水平下显著为负,一次项L.urbrate系数在1%显著性水平下显著为正,与SO2排放量之间为倒U型关系,与席鹏辉等[25]的结论一致。
对标准误在个体和时间上双重聚类(Cluster)调整,可克服自相关和异方差等问题对统计推断的影响[38]。表3模型(1)—(5)均采用双重聚类标准误,以增加估计结果的可靠性。此外,表3模型(1)—(5)中,关键解释变量均在1%、5%或10%显著性水平下显著,本身也是一种稳健性检验。

表 3    模型式(11)的FE估计结果

注:***、**和* 分别表示 1%、 5%和10%的显著水平,括号内为双重聚类稳健标准误。下同。

(三)稳健性检验

本文还将通过内生性处理、替换被解释变量、增加控制变量等进行进一步稳健性检验。

⒈ 内生性处理

数字经济发展水平影响工业企业的SO2排放量。反过来,工业企业SO2排放量增加企业的运营成本,加重企业的环境处置负担,在资源有限的情况下,将可能影响企业实施数字化转型,从而影响数字经济发展水平。这样,数字经济发展水平可能具有内生性。

本文借鉴Kim等[39]做法,以其他省市区相同年度数字经济发展水平均值取对数及对数的平方项ivdecoivdeco2作为工具变量,采用工具变量法(IV)重新估计模型式(11),如表4所示。表4中均控制了年度效应、个体效应和控制变量。弱工具变量检验的Cragg-Donald F统计量为32.7140,大于10%偏误下的临界值7.0300,即拒绝弱工具变量的假设,ivdecoivdeco2为有效工具变量。估计结果如表4模型(6)。数字经济发展水平二次项deco2的系数在1%显著性水平下显著为负,一次项deco的系数在1%显著性水平下显著为正。可见,在排除内生性的情况下,依据模型(5)得出的结论是稳健的。

2.其他稳健性检验

将被解释变量替换为人均工业固定废物排放量的对数wgasr,采用FE新估计模型式(11),结果为表4模型(7)。增加人口密度lnden,采用FE新估计模型式(11),结果为表4模型(8)。增加金融分权fd及其二次项fd2,采用FE新估计模型式(11),结果为表4模型(9)。从模型(7)—(9)看,数字经济发展水平二次项L.deco2的系数均在1%显著性水平下显著为负,一次项L.deco的系数均在5%显著性水平下显著为正。因此,依据模型(5)得出的结论是稳健的。综上,在排除内生性、替换被解释变量、控制人口密度、控制金融分权的情况下,依据模型(5)得出的结论是稳健的,即数字经济发展水平与SO2排放量之间为倒U型关系,随着数数字经济发展水平的提升,SO2排放量先上升后下降。

表4    模型式(11)的稳健性检验

注:括号中为稳健标准误(IV除外);IV均通过了工具变量有效性检验。

五、进一步讨论

党的十九大要求“持续实施大气污染防治行动,打赢蓝天保卫战”。为落实党的十九大精神,中央和地方政府对包括SO2排放在内的大气污染进行了大力治理。国家统计局数据显示,2012—2017年国家财政环境保护支出年复合增长率为13.6%;而党的十九大后,国家财政环境保护支出年复合增长率达15.1%(如图2所示)。

图2    2012—2019年国家财政环境保护支出
单位:亿元

前文理论分析和检验均表明,数字经济发展水平与SO2排放量之间为倒U型非线性关系。数字经济发展水平存在拐点,当超越拐点后,数字经济发展水平方可抑制SO2排放。因此,拐点的大小具有重要意义。从地方政府层面看,在中国改革进程中,财政分权制度逐渐得以形成[40],财政分权即中央将一定的税收权和支出责权赋予地方政府,使地方政府拥有了一定的收支自主权[41]。因此,为贯彻党的十九大精神,地方政府可能基于财政分权加大环境保护支出。那么,地方政府的财政分权会对数字经济发展水平的拐点产生何种影响呢?

前文理论分析表明,数字经济发展水平的拐点如式(12)所示:

                                    (12)

   式(12)中,由前提假设可知,为代表性工业企业污染因子的提升倾向。当地方政府基于财政分权加大环境保护支出力度时,为应对地方政府的环境保护,代表性工业企业的污染因子提升倾向将降低,即其中fiscd为地方政府的财政分权。

式(12)两边对财政分权求偏导可得式(13):

                 (13) 

前述分析表明拐点为正,因而即随着财政分权fiscd的增加,数字经济发展水平的拐点F0将上升。表5为检验财政分权对数字经济发展水平拐点的影响结果。本文将财政分权和数字经济发展水平的交互项fiscd×deco追加到模型式(11),采用FE重新估计,结果为表5模型(10);以人均工业固定废物排放量的对数wgasr为被解释变量,采用FE重新估计,结果为表5模型(11);以财政支出占全国财政支出比例计算支出分权rfiscd,采用FE重新估计,结果为表5模型(12)。表5中均控制了年度效应、个体效应和控制变量。

从模型(10)—(12)看,财政分权与数字经济发展水平的交互项L.fiscd×L.deco、L.rfiscd× L .deco的系数在1%或5%显著性水平下显著为正。数字经济发展水平二次项L.deco2的系数均在1%显著性水平下显著为正。因此,随着财政分权的增加,数字经济发展水平的拐点将提升。

表5   财政分权影响拐点的估计结果

七、结论与启示

发展数字经济究竟会对SO2排放产生何种影响呢?国内外文献对这一问题缺乏研究。而这一问题的研究对助推中国经济高质量发展具有重要意义。研究结果表明:第一,数字经济发展水平与SO2排放量之间为倒U型非线性关系,随着数字经济发展水平的提升,SO2排放量先上升后下降。第二,数字经济发展水平与SO2排放量之间之所以为倒U型非线性关系,原因在于数字经济具有利润激励效应和成本抑制效应。第三,理论分析和实证检验均表明,财政分权可抑制环境污染,但会拉高数字经济发展水平的拐点。
基于研究结论,启示如下:第一,数字经济发展水平与SO2排放量之间为倒U型非线性关系,各地方政府在推进数字经济发展过程中,在拐点左侧,数字经济的发展将加大SO2排放量。因此,为防治SO2排放,地方政府需采取对冲政策以缓解其不利影响。第二,财政分权可抑制SO2排放量,但会拉高数字经济发展水平的拐点。因此,地方政府在基于财政分权治理SO2排放和促进数字经济发展时,需考虑对数字经济发展水平拐点的影响。第三,数字经济发展水平与SO2排放量之间为倒U型非线性关系,地方政府促进数字经济发展的政策可同时抑制SO2排放;而对其他省市区则未必。因此,地方政府需因地制宜,制定差异化政策,不可一味模仿。

参考文献

[1] 丁志帆.数字经济驱动经济高质量发展的机制研究:一个理论分析框架[J].现代经济探讨,2020,(1):85-92.

[2] 罗以洪.大数据人工智能区块链等ICT促进数字经济高质量发展机理探析[J].贵州社会科学,2019,(12):122-132.

[3] 李辉.大数据推动我国经济高质量发展的理论机理、实践基础与政策选择[J].经济学家,2019,(3):52-59.

[4] 王梦菲,张昕蔚.数字经济时代技术变革对生产过程的影响机制研究[J].经济学家,2020,(1):52-58.

[5] 丁鹏程,孙玉栋,梅正午.财政分权、地方政府行为与环境污染——基于30个省份SO2排放量的实证研究[J].经济问题探索,2019,(11):37-48.

[6] 肖超,肖挺.财政分权对我国环境污染的影响——基于产业结构和经济发展水平的视角[J].华东经济管理,2019,(11):72-77.

[7] Wheeler, D . Racing to the Bottom : Foreign Investment and Air Pollution in Developing Countries[J]. Policy Research Working Paper Series, 2001, 10(3):225-245.

[8] List, J .A. , Millimet, D. L. , Mchone, P. G. F. W . Effects of Environmental Regulations on Manufacturing Plant Births: Evidence From a Propensity Score Matching Estimator[J]. The Review of Economics and Statistics, 2003, 85(4):944-952.

[9] 朱向东,贺灿飞,李茜,毛熙彦.地方政府竞争、环境规制与中国城市空气污染[J].中国人口·资源与环境,2018,(6):103-110.

[10] Dong, Q. , Wen, S. , Liu, X . Credit Allocation, Pollution, and Sustainable Growth: Theory and Evidence From China[J]. Emerging Markets Finance and Trade, 2019:1-19.

[11] 胡宗义,李毅.金融发展对环境污染的双重效应与门槛特征[J].中国软科学,2019,(7):68-80.

[12] 王伟,杨敬峰,孙芳城.金融发展与城市环境污染:加剧还是缓解——基于268个城市数据[J].西南民族大学学报(人文社科版),2019,(5):96-106

[13] 张华.税收竞争与环境污染:影响机制与实证检验[J].财经问题研究,2019,(3):34-42.

[14] 周林意,朱德米.地方政府税收竞争、邻近效应与环境污染[J].中国人口·资源与环境,2018,(6):140-148.

[15] 韩晶,毛渊龙,朱兆一.产业集聚对环境污染的影响[J].经济社会体制比较,2019,(3):71-80.

[16] Stokey, N. L . Are There Limits to Growth?[J]. International Economic Review, 1998, 39(1):1-31.

[17] 戴觅,张轶凡,黄炜.贸易自由化如何影响中国区域劳动力市场?[J].管理世界,2019,(6):56-69.

[18] 宫旭红,曹云祥.资本深化与制造业部门劳动生产率的提升——基于工资上涨及政府投资的视角[J].经济评论,2014,(3):51-63.

[19] 肖兴志,张伟广,朝镛.僵尸企业与就业增长:保护还是排挤?[J].管理世界,2019,(8):69-83.

[20] 盛鹏飞.环境污染与城乡收入差距:作用机制与基于中国经济事实的检验[J].中国人口·资源与环境,2017,(10):56-63.

[21] 肖旭,戚聿东.产业数字化转型的价值维度与理论逻辑[J].改革,2019,(8):61-70.

[22] 孙琳琳,郑海涛,任若恩.信息化对中国经济增长的贡献:行业面板数据的经验证据[J].世界经济,2012,(2):3-25.

[23] Ann, B. , Casey, I. , Kathryn, S .  How Does Information Technology Affect Productivity? Plant-level Comparisons of Product Innovation, Process Improvement, and Worker Skills[J].  Quarterly Journal of Economics,2007,122(4): 1721-1758.

[24] 朱秋博,白军飞,彭超,等.信息化提升了农业生产率吗?[J].中国农村经济,2019,(4):22-40.

[25] 席鹏辉,梁若冰,谢贞发.税收分成调整、财政压力与工业污染[J].世界经济,2017,(10):170-192.

[26] 张明志,余东华,孙婷.高铁开通对城市生产体系绿色重构的影响[J].中国人口·资源与环境,2019,(7):41-49.

[27] 杜龙政,赵云辉,陶克涛,等.环境规制、治理转型对绿色竞争力提升的复合效应——基于中国工业的经验证据[J].经济研究,2019,(10):106-120.

[28] 胡望斌,张玉利,杨俊.同质性还是异质性:创业导向对技术创业团队与新企业绩效关系的调节作用研究[J].管理世界,2014,(6):92-109,187-188.

[29] 聂飞,刘海云.FDI、环境污染与经济增长的相关性研究——基于动态联立方程模型的实证检验[J].国际贸易问题,2015,(2):72-83.

[30] 张红凤,周峰,杨慧,等.环境保护与经济发展双赢的规制绩效实证分析[J].经济研究,2009,(3):14-26,67.

[31] 丁鹏程,孙玉栋,梅正午.财政分权、地方政府行为与环境污染——基于30个省份SO2排放量的实证研究[J].经济问题探索,2019,(11):37-48.

[32] 何德旭,苗文龙.财政分权是否影响金融分权——基于省际分权数据空间效应的比较分析[J].经济研究,2016,(2):42-55.

[33] 王兰平,王昱,刘思钰,等.金融发展促进产业结构升级的非线性影响[J].科学学研究,2020,(2):239-251.

[34] 王先柱,吴蕾.土地财政、房价上涨与产业结构升级——基于面板数据联立方程模型的分析[J].经济问题探索,2019,(3):32-39.

[35] 许涤龙,陈双莲.基于金融压力指数的系统性金融风险测度研究[J].经济学动态,2015,(4):69-78

[36] Friedl, B ., Getzner, M . Determinants of CO2 Emissions in a Small Open Economy[J]. Ecological Economics, 2003, 45(1):133-148

[37] 李鹏涛.中国环境库兹涅茨曲线的实证分析[J].中国人口·资源与环境,2017,(S1):22-24.

[38] Petersen, M. A . Estimating Standard Errors in Finance Panel Data Sets: Comparing Approaches[J]. NBER Working Papers, 2005, 22(1):435-480.

[39] Kim, Y. , Li, H. , Li, S . Corporate Social Responsibility and Stock Price Crash Risk[J]. Journal of Banking and Finance, 2014, 43(6):1-13.

[40] 王文剑,仉建涛,覃成林.财政分权、地方政府竞争与FDI的增长效应[J].管理世界,2007,(3):13-22,171.

[41] 方晓利,周业安.财政分权理论述评[J].教学与研究,2001,(3):53-57.



(责任编辑:邓  菁)


公众号责任编辑:李明齐

电话:0411-84710267  

投稿网站:http://zzs.dufe.edu.cn/



数字经济专题

陈永伟 | 数据产权应划归平台企业还是消费者?

杨培芳 | 构建互联网时代的社会协同新经济模式

费方域,闫自信 | 大数据经济学视域下的竞争政策

吕本富 | 从平台经济到平台经济学

吴绪亮 | 现代经济学的数字化革命

陈   禹 | 互联网时代需要什么样的经济学

郑   磊,郑扬洋 | 区块链赋能实体经济的路径——区块链 Token 经济生态初

谷燕西 | Libra 对全球金融行业的冲击

袁煜明,王   蕊 | Libra 的运营、监管与“类 Libra”的功能畅想

孙点婧 | 首次代币发行的监管:问题与对策

郑   磊 | 通证数字经济实现路径:产业数字化与数据资产化

姜奇平 | 用网络方法解释网络经济学

龙白滔 | 全球数字货币竞争的政治经济学分析——公共数字人民币DC/EP与私人数字美元Libra
戴   龙 | 数字经济产业与数字贸易壁垒规制——现状、挑战及中国因应

曲   创,刘重阳 | 互联网平台经济的中国模式

杨 望, 彭 珮, 穆 蓉 | 全球区块链产业竞争格局与中国创新战

吴汉洪,刘雅甜 | 互联网行业的竞争特点与反垄断政策

孙康勇 | 数字经济时代的企业创新

张  穹,曾  雄 | 数字经济领域的创新与公共政策的匹配

方  燕 | 网络产业反垄断规制的重新审视

寇宗来,刘雅婧 | 数字经济下的监管挑战

丁文联 | 数据竞争的法律制度基础

蒋传海,应珊珊,陈青祝 | 互联网反垄断面临的挑战和难点

黄晓锦 | 大数据时代数据分享与抓取的竞争法边界

刘泉红 | 中国互联网经济发展的体制机制保障

钟鸿钧 | 产业互联网和人工智能如何重塑中国经济?

姜奇平 | 数字经济学的基本问题与定性、定量两种分析框架

向 坤,王公博 | 数字经济时代新媒体的政治经济学分析

刘叶婷,隆云滔,唐斯斯 | 中国人工智能产业发展现状与策略研究——以五大城市群为例


中国道路专题

周 文 | 新中国70年中国经济学的理论贡献与新时代历史使命

周天勇 | 要素配置市场化改革释放经济增长潜能的定量估计

许红梅,李春涛,刘亚楠 | 交通基础设施建设与西部经济高质量发展

寇宗来 | 新冠疫情冲击对商业模式和社会治理的影响

郭劲光,杨成来 | 交易费用、扶贫治理与制度安排的选择

陈 林 | 重大突发公共卫生事件的经济影响及应对实践经验——基于文献回顾视角

孙 静,王佳宁 | 大运河文化带文化产业发展的省际比较与提升路径

侯为民 | 现代化经济体系的理论指向与时代内涵

周 文,何雨晴 | 国家治理现代化的政治经济学逻辑

裴长洪 | “六稳”“六保”对中国经济高质量发展的启示

赵建国,王瑞娟 | 政府注意力分配与中国社会保障事业发展——基于1978—2019年国务院政府工作报告的内容分析

张  巍,胡鞍钢,杨竺松 | 发展社会主义文化生产力:新中国70年回顾与总结

(点击图片链接浏览目次)


投稿请点击

  阅读原文

   

: . Video Mini Program Like ,轻点两下取消赞 Wow ,轻点两下取消在看

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存