1. Komor,A.C., et al., Programmable editing of a target base in genomic DNAwithout double-stranded DNA cleavage. 2016. 533(7603): p.420-424.
2. Gaudelli,N.M., et al., Programmable base editing of A• T to G• C ingenomic DNA without DNA cleavage. 2017. 551(7681): p.464-471.
3. Molla,K.A., et al., Base editing landscape extends to performtransversion mutation. 2020. 36(12): p. 899-901.
4. Landrum,M.J., et al., ClinVar: public archive of relationships amongsequence variation and human phenotype. 2014. 42(D1): p.D980-D985.
5. Rees,H.A. and D.R.J.N.r.g. Liu, Base editing: precision chemistry onthe genome and transcriptome of living cells. 2018. 19(12):p. 770-788.
6. Nishida,K., et al., Targeted nucleotide editing using hybrid prokaryoticand vertebrate adaptive immune systems. 2016. 353(6305):p. aaf8729.
7. Caso,F. and B.J.L.A. Davies, Base editing and prime editing inlaboratory animals. 2022. 56(1): p. 35-49.
8. Hwang,G.-H., et al., Web-based design and analysis tools for CRISPR baseediting. 2018. 19(1): p. 1-7.
9. Kurt,I.C., et al., CRISPR C-to-G base editors for inducing targeted DNAtransversions in human cells. 2021. 39(1): p. 41-46.
10. Zhao,D., et al., Glycosylase base editors enable C-to-A and C-to-G basechanges. 2021. 39(1): p. 35-40.
11. Chen,L., et al., Programmable C: G to G: C genome editing withCRISPR-Cas9-directed base excision repair proteins. 2021. 12(1):p. 1-7.
12. Grünewald,J., et al., A dual-deaminase CRISPR base editor enables concurrentadenine and cytosine editing. 2020. 38(7): p. 861-864.
13. Zhang,X., et al., Dual base editor catalyzes both cytosine and adeninebase conversions in human cells. 2020. 38(7): p. 856-860.
14. Xie,J., et al., ACBE, a new base editor for simultaneous C-to-T andA-to-G substitutions in mammalian systems. 2020. 18(1): p.1-14.
15. Liang,Y., et al., AGBE: a dual deaminase-mediated base editor by fusingCGBE with ABE for creating a saturated mutant population withmultiple editing patterns. 2022. 50(9): p. 5384-5399.
16. Koblan,L.W., et al., Improving cytidine and adenine base editors byexpression optimization and ancestral reconstruction. 2018.36(9): p. 843-846.
17. Fu,J., et al., Human cell based directed evolution of adenine baseeditors with improved efficiency. 2021. 12(1): p. 1-11.
18. Yuan,T., et al., Optimization of C-to-G base editors with sequencecontext preference predictable by machine learning methods. 2021.12(1): p. 1-11.
19. Levy,J.M., et al., Cytosine and adenine base editing of the brain,liver, retina, heart and skeletal muscle of mice via adeno-associatedviruses. 2020. 4(1): p. 97-110.
20. Kingwell,K.J.N.r.D.d., Base editors hit the clinic.
E.N.D
为促进细胞与基因治疗领域的合作交流,更好的服务广大读者朋友,微信公众号“细胞与基因治疗领域”团队组建了专业的细胞与基因治疗行业交流群(涉及DNA药物、RNA药物和细胞治疗等方面),长按下方二维码,添加小编微信进群。由于申请人数较多,添加微信时请备注:院校/企事业单位名称—专业/职务—姓名。如果您是PI/ 教授/主管及以上职务,还请注明。
往期文章推荐:
华大基因支持细胞基因疗法,连续增资子公司,禾沐基因获3000万元增资,投前估值2亿元
深度解析|基于mRNA的癌症疫苗:从mRNA药物分子设计到免疫反应
诺华表示两名儿童接受Zolgensma治疗后死于肝功能衰竭,具体原因正在进一步调查中
一文读懂体外基因疗法中最常用载体----慢病毒载体现状与进展
眼科基因疗法研发热情提升,全球布局企业不断增加,研发突破不断
基因疗法又一里程碑|全球首个直接注入大脑的AAV基因疗法获批上市