学术视界|MS: 数据分析支持分散式创新
Data Analytics Supports Decentralized Innovation
数据分析支持分散式创新
Lynn Wu
The Wharton School, University of Pennsylvania
Bowen Lou
The Wharton School, University of Pennsylvania
Lorin Hitt
The Wharton School, University of Pennsylvania
数据分析技术可以通过识别,访问,组合和配置现有知识来解决新的问题领域,从而加快创新过程。然而,像信息技术一样,企业利用这些机会的能力取决于各种互补的人力资本和组织能力。我们关注的是数据分析技术是在分散式创新结构的公司还是在集中式创新结构的公司更有价值。在现有研究基础上,我们的分析使用详细的员工级别数据来衡量公司的分析能力,并将这些数据与公司内部发明者网络中的指标进行匹配,以揭示公司的创新结构是集中式还是分散式。在1988年至2013年间,由1864家公开交易的公司组成的面板数据中,我们发现具有分散式创新结构的公司对数据分析技能的需求更大,并从其数据分析能力中能获得更大的生产率收益,这与数据分析和分散式创新之间的互补性相一致。我们还发现,数据分析有助于分散的结构创建新的技术组合和现有技术的重用,这与数据分析跨领域联系知识并将外部知识整合到公司的能力保持一致。而且,这种影响主要来自非发明家雇员的数据分析能力。这些结果表明,数据分析对创新的好处取决于现有的组织结构。与IT生产率悖论相似,这些结果可以帮助解释当代的数据分析-创新悖论,即尽管数据分析投资有所增加,但创新速度明显放缓。
Abstract:Data-analytics technology can accelerate the innovation process by enabling existing knowledge to be identified, accessed, combined, and deployed to address new problem domains. However, like prior advances in information technology, the ability of firms to exploit these opportunities depends on a variety of complementary human capital and organizational capabilities. We focus on whether analytics is more valuable in firms where innovation within a firm has decentralized groups of inventors or centralized ones. Our analysis draws on prior work measuring firm-analytics capability using detailed employee-level data and matches these data to metrics on intrafirm inventor networks that reveal whether a firm’s innovation structure is centralized or decentralized. In a panel of 1,864 publicly traded firms from the years 1988–2013, we find that firms with a decentralized innovation structure have a greater demand for analytics skills and receive greater productivity benefits from their analytics capabilities, consistent with a complementarity between analytics and decentralized innovation. We also find that analytics helps decentralized structures to create new combinations and reuse of existing technologies, consistent with the ability of analytics to link knowledge across diverse domains and to integrate external knowledge into the firm. Furthermore, the effect primarily comes from the analytics capabilities of the noninventor employees as opposed to inventors themselves. These results show that the benefit of analytics on innovation depends on existing organizational structures. Similar to the IT–productivity paradox, these results can help explain a contemporary analytics–innovation paradox—the apparent slowdown in innovation despite the recent increase in analytics investments.
关键词
数据分析;人工智能;大数据;自动化;去中心化;组织补充;创新;重组;新颖创新;生产率;信息系统经济学
Key words:
data analytics;AI;big data;automation;decetralization;organizational complements;innovation;recombination;novel innovation;productivity;economics of IS
结论
分散式创新结构是企业的重要结构特征,随着数据技术的广泛应用,分散型创新结构可能会影响企业内部创新流程的性质和结果。
短期内数据分析的传播将有利于分散式创新结构来产生结合现有知识或以新方式重用外部信息的创新。从长远来看,如果生产这类创新是他们的发明活动的重点,那么企业可以通过转向更分散的创新结构来潜在地受益。
通过描述记录数据分析能力是如何支持创新产生的证明现代科技可以作为生产创新的一项重要输入,而不仅仅是创新输出的产物。
文章来源:Wu, Lou, and Hitt: Data Analytics Supports Decentralized Innovation Management Science, Articles in Advance, pp. 1–15
。END。
《网络交易监督管理办法》发布!(附全文):强化个人信息保护成亮点
学术视界
学术视界|MS: 数字平台能降低道德风险吗? 关于优步和出租车的案例
学术视界 | MISQ:游戏化对口碑贡献者的感知和口碑消费者行为的影响
学术视界|SMJ: 从专有到集体治理: 平台参与战略如何演变?
学术视界|SMJ:至关重要的平台治理问题:平台开放控制如何影响平台互补者之间的知识共享(附下载链接)