【中考专题】费马点,应用举例
关于最值:
【中考专题】“PA+kPB”最值模型—“胡不归”与“阿氏圆”
关于费马点:
关于费马点,可以参考上面文章,此处不再赘述费马点的定义及情形。本文主要以实例讲述费马点在解决数学问题中的应用。
微信公众号“老杨和数学的故事”(ID:YoungMath)整理,未经许可,不得转载!
典例讲解
【例题讲解】1
【解析】
以AB、BP为边分别作等边三角形,那么BP=PP';可证明△ABP和△A'BP'全等,将AP转为A'P',那么只要A'、P'、P、C四点共线即可;
其实我们在图二中,连接AC,就可以看出上述的模型。
在求解最小值方面,小编给出两种方法,第一种方法,连接AC,△ACE是含30°的直角三角形,△AA'E是含45°的直角三角形,其中AC的值可求,那么解直角三角形即可;第二种方法,借助等腰△A'BC和15°角,构造含30°角的直角三角形,即Rt△A'BE,直接勾股定理求斜边长度。
【延伸】如果给出AP+BP+CP的最小值,求正方形边长呢?
在上述两种方法下,你是否能算出来呢?
【解析(1)】
【解析(2)】
对于(2)还可以这样做:
对(1)和(2)②的解析如下:
对(3)的解析如下:
方法一:连接AC,过点A作AF⊥EC,垂足为点F;
△ACF是含30°的直角三角形,△AEF是含45°的直角三角形,那么解直角三角形即可;
方法二:借助等腰△EBC和15°角,构造含30°角的直角三角形,即Rt△BEF,然后在Rt△CEF中直接勾股定理可求正方形边长。
方法三:(本题借助“胡不归”亦可)
若对此题进行改变,“如图 , 四边形 ABCD 是正方形 , 点 M为对角线 BD (不含B点)上任意一点 , 连接 AM、CM .当 AM+BM+CM的最小值为√(3)+1时 , 求正方形的边长 .”
对于方法三于新华老师指导如下:
随堂检测
典例精讲
【解析】(1)由等边三角形的性质和旋转的性质,即可得到△DCQ≌△BCP的条件;
【解析】(2)
将ΔADP绕点A逆时针旋转 60° ,可得 : ΔAFE;由(2)可得 :当点M、P、E、F四点共线时 ,AP+PM+DP的值最小。
∵点 M在边 BC上
∴当FM⊥BC时 , FM的值最小 .
拔高训练
【提示】“化繁为简,以简驭繁”,提炼出本质问题,去掉抛物线。
中考模型系列文章:
【中考专题】“PA+kPB”最值模型—“胡不归”与“阿氏圆”
【中考专题】抛物线与2倍角存在性(2017·盐城中考·26)
想要获取更多,请点击文末“阅读原文”,然后搜索历史记录。关键词:模型、压轴题、抛物线、类比探究。
如果还有更好的方法,欢迎私信小编,共同学习。
看完,记得点在看哟~