查看原文
其他

解题技巧:小学数学典型应用题题型汇总三

点击关注 数学与自然 2022-08-05

本公众号大约有300多篇优质讲座课件,可关注公众号后,查看历史消息

推荐阅读点击下方相应标题即可跳转阅读全文

2020高考数学试题分析与2021年复习备考建议

2021年“新高考”数学试卷结构&题型分析

2021高考一轮复习注意事项,避开10大弊病8大雷区

2021届高三一轮复习备考暨提分策略(含PPT)

中国高考评价体系下的2021年一轮数学备考策略

高一数学:48道例题,29道练习(国庆精选题)

强基计划2020真题!新高三,高一高二的同学一定要收好!

新高考:高一新生职业生涯规划指导(含PPT)

例谈新形势下高三数学“强基”策略与方法(含文档)

好文荐读 | 蔡上鹤:高中数学新教材第一章教学问答

浙江省教研:例谈“高观点”下的数学课堂教学

2021江苏命题研究:关注数学本质,提升数学核心素养(含文档)

讲题应如何讲?

《妙解之慧》优质学习资源汇总(建议收藏)

建议收藏:高中各科思维导图汇总

初中数学解题研究群:1164126943

高中数学解题研究群:414652933

全国各地2021命题研究讲座文章,可点击文末阅读原文,查看,已累计分享专题讲座1000余篇,可关注公众号后,查看历史消息.欢迎转发分享,让全国师生享受同等优质教育资源。

开讲啦:张继平感受数学之美

“我懂你”,用古诗词的23种说法,真的太美了

2021年,老师,请对自己好一点!

张景中院士:好的老师应当向学生展示数学思维的美妙,我主张“多学少考”

课堂如何让教师“少教”,学生“多学”?

放假了,老师如何写好教学反思?(值得收藏)

老师眼中的“好课”,为何学生偏偏不买账?

2021年中考复习策略 与核心素养下教学 案例剖析(含PPT)

疫情反弹,居家学习必备:初中数学微课汇总(建议收藏)

院士专家讲科学 | 黄立锋:疫情下如何常态化学习

高一近期各地数学文化题搜集

数学文化主题公园的讲座:数学的可视化直观

张奠宙:数学教育在争论中前进--- 兼谈数学本质和数学文化

源于数学文化 解于数学文化

初中数学教学融入数学文化的途径与策略

唤醒“固化思维”,走向深度学习 :核心素养下高考复习“一题多解”案例探微

命题评价丨发展学生高阶思维的命题思考

好文荐读 | 喻平:数学教学实践中的理论思维

数学解题的思维过程

高中数学:关注思维的临考前复习

七种思维方法呈现给你“数学思维”是什么?

思维拓展:为什么要做一个有逻辑的人?

把握函数本质,培养解题思维(含PPT)

渗透数学思想,发展数学思维(含PPT)

更多专题讲座,命题研究,解题技巧,学习方法,请点下方公众号,查看历史消息。欢迎关注,持续更新。

【名师视频】数学名师课堂实录100节(1—10)

【名师视频】数学名师课堂实录100节(11—20)

【名师视频】数学名师课堂实录100节(21—30)

【名师视频】数学名师课堂实录100节(31—40)

解题技巧:小学数学典型应用题题型汇总二

解题技巧:小学数学典型应用题题型汇总

史宁中解读小学数学教育:如何在课堂中落实数学核心素养

【名师视频】数学名师课堂实录100节(101—120)

小学数学典型应用题十六(方阵问题)

方阵问题

【含义】


将若干人或物依一定条件排成正方形(简称方阵),根据已知条件求总人数或总物数,这类问题就叫做方阵问题。

【数量关系】


(1)方阵每边人数与四周人数的关系:四周人数=(每边人数-1)×4每边人数=四周人数÷4+1(2)方阵总人数的求法:

实心方阵:总人数=每边人数×每边人数

空心方阵:总人数=外每边的人数平方-内每边的人数平方内每边人数=外每边人数-层数×2(3)若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4

【解题思路和方法】


方阵问题有实心与空心两种。实心方阵的求法是以每边的数自乘;空心方阵的变化较多,其解答方法应根据具体情况确定。
例1:



佳一学校参加运动会团体操比赛的运动员排成了一个正方形队列。如果要使这个正方形队列减少一行和一列,则要减少23人。那么参加团体操表演的运动员一共有 多少人?


解:

1、要知道参加表演的运动员共有多少人,只需要找到最外层每边有多少人即可。

2、一个正方形队列,减去一行和一列,就是去掉了两条边上的人数,其中顶点上的人数计算了两次,所以减少的人数=每边的人数×2-1。所以开始每边有(23+1)÷2=12(人),参加表演的有12×12=144(人)。


例2:



欢欢用围棋子围成一个三层空心方阵,最外一层每边有围棋子16枚,欢欢摆这个方阵共用了多少枚围棋子?


解法1:

1、本题考查的空心方阵,根据四周的枚数和每边上的枚数之间的关系,算出每一层的棋子数。

2、方阵每向里一层,每边的枚数就减少2枚。知道最外一层每边放16枚,就可求出第二层及第三层每边枚数,知道各层每边的枚数,就可以求出各层的总数。最外一层的棋子的枚数:(16-1)×4=60(枚),第二层棋子的枚数:(16-2-1)×4=52(枚),第三层棋子的枚数:(16-2-2-1)×4=11×4=44(枚),摆这个方阵共用了60+52+44=156(枚)棋子。


解法2: 若将空心方阵分成四个相等的矩形计算,则:总人数=(每边人数-层数)×层数×4。则:(16-3)×3×4=156(枚)



例3:



一个实心方阵由81人组成,这个方阵的最外层有 多少人?


解:

方阵的行数和列数相同,9×9=81,所以这是一个9行9列的方阵。最外层人数与一边人数的关系:一边人数×4-4=一层人数。所以最外层的人数是9×4-4=32(人)。


例4:



明明在一个用棋子排成的实心方阵的下面和右面各多排一排棋子,一共用了23个棋子,这样排成了一个新方阵,他又把这个新方阵改排成一个4层的空心方阵,这个方阵最外层每边有 多少个棋子?


解:

1、根据题意,排成的这个新方阵的每边棋子数是(23+1)÷2=12(个),那么这个实心方阵的棋子总数是12×12=144(个)。

2、根据空心方阵中,每相邻的两层的棋子数相差8的关系,我们可以找出等量关系,列方程解决。

设最外层有x个棋子,则从外到内每层的棋子数分别是(x-8)个、(x-16)个、(x-24)个。

则:x+ x-8+x-16+x-24=144,x=48

所以这个方阵最外层每边有48÷4+1=13(个)棋子

小学数学典型应用题第十七讲(牛吃草问题)


牛吃草问题

【含义】


“牛吃草”问题是大科学家牛顿提出的问题,也叫“牛顿问题”。这类问题的特点在于要考虑草边吃边长这个因素。

【数量关系】


草总量=原有草量+草每天生长量×天数

【解题思路和方法】

解这类题的关键是求出草每天的生长量。
例1:



这是一片新鲜的牧场,现有400份草,每天都均匀地生长6份草。若一开始放26头奶牛,每头奶牛每天吃1份草。这片牧场的草够奶牛吃多少天?

解:

1、本题考查的是牛吃草的问题,解决本题的关键是要求出每天新增加的草量,在所求的问题中,让几头牛专吃新长出的草,其余的牛吃原有的草。

2、由题目可知:原有的草量+新长的草量=总的草量。

奶牛除了要吃掉原有的草,也要吃掉新长的草。原有的草量是不变的。每天新长的草量是匀速的,每天都长6份,每头奶牛每天吃1份,新长的草刚好够6头奶牛吃的量,那么剩下的20头奶牛吃的就是原有的草,每天吃20份,400÷20=20(天),够吃20天。


例2:


一水库原有存水量一定,河水每天均匀入库。5台抽水机连续20天可抽干;6台同样的抽水机连续15天可抽干。若要求6天抽干,需要 多少台同样的抽水机?

解:

设每台抽水机每天可抽1份水。

5台抽水机20天抽水:5×20=100(份)

6台抽水机15天抽水:6×15=90(份)

每天入库的水量:(100-90)÷(20-15)=2(份)

原有的存水量:100-20×2=60(份)

需抽水机台数:60÷6+2=12(台)

答:要求6天抽干,需要12台同样的抽水机。


例3:




某车站在检票前若干分钟就开始排队,每分钟来的旅客人数一样多。从开始检票到等候检票的队伍消失,同时开4个检票口需30分钟,同时开5个检票口需20分钟。如果同时打开7个检票口,那么需 多少分钟?

解:

1、本题考查的是牛吃草的问题,“旅客”相当于“草”,检票口相当于“牛”。

2、由题目可知,旅客总数由两部分组成:一部分是开始检票前已经排队的原有旅客,另一部分是开始检票后新来的旅客。设1个检票口1分钟检票的人数为1份。那么4个检票口30分钟检票4×30=120(份),5个检票口20分钟检票5×20=100(份),多花了10分钟多检了120-100=20(份),那么每分钟新增顾客数量为20÷10=2(份)。那么原有顾客总量为:120-30×2=60(份)。同时打开7个检票口,我们可以让2个检票口专门通过新来的顾客,其余的5个检票口通过原来的顾客,需要60÷5=12(分钟)。

小学数学典型应用题十八【鸡兔同笼问题】


鸡兔同笼问题

【含义】

这是古典的算术问题。已知笼子里鸡、兔共有多少只头和多少只脚,求鸡、兔各有多少只的问题,叫做第一鸡兔同笼问题。已知鸡兔的总数和鸡脚与兔脚的差,求鸡、兔各是多少的问题叫做第二鸡兔同笼问题。

【数量关系】

第一鸡兔同笼问题:假设全都是鸡,则有兔数=(实际脚数-2×鸡兔总数)÷(4-2)假设全都是兔,则有鸡数=(4×鸡兔总数-实际脚数)÷(4-2)第二鸡兔同笼问题:假设全是鸡,则有兔数=(2×鸡兔总数-鸡与兔脚之差)÷(4+2)假设全是兔,则有鸡数=(4×鸡兔总数+鸡与兔脚之差)÷(4+2)

【解题思路和方法】

解此类题目一般都用假设法,可以先假设都是鸡,也可以假设都是兔。如果先假设都是鸡,然后以兔换鸡;如果先假设都是兔,然后以鸡换兔。这类问题也叫置换问题。通过先假设,再置换,使问题得到解决。例1:


鸡和兔在一个笼子里,共有35个头,94只脚,那么鸡有多少只,兔有多少只?

假设笼子里全部都是鸡,每只鸡有2只脚,那么一共应该有35×2=70(只)脚,而实际有94只脚,这多出来的脚就是把兔子当作鸡多出来的,每只兔子比鸡多2只脚,一共多了94-70=24(只),则兔子有24÷2=12(只),那么鸡有35-12=23(只)。

例2:


动物园里有鸵鸟和长颈鹿共70只,其中鸵鸟的脚比长颈鹿多80只,那么鸵鸟有多少只,长颈鹿有多少只?

解:

假设全部都是鸵鸟,则一共有70×2=140(只)脚,此时长颈鹿的脚数是0,鸵鸟脚比长颈鹿脚多140只,而实际上鸵鸟的脚比长颈鹿多80只,因此鸵鸟脚与长颈鹿脚的差数多了140-80=60(只),这是因为把其中的长颈鹿换成了鸵鸟。把每一只长颈鹿换成鸵鸟,鸵鸟的脚数将增加2只,长颈鹿的脚数减少4只,那么鸵鸟脚数与长颈鹿脚数的差就增加了6只,所以换成鸵鸟的长颈鹿有60÷6=10(只),鸵鸟有70-10=60(只)

例3:


李阿姨的农场里养了一批鸡和兔,共有144条腿,如果鸡数和兔数互换,那么共有腿156条。鸡和兔一共有多少只?

解:

根据题意可得:前后鸡的总只数=前后兔的总只数。把1只鸡和1只兔子看做一组,共有6条腿。前后鸡和兔的总腿数有144+156=300(条),所以共有300÷6=50(组),也就是鸡和兔的总只数有50只。

例4:

一次数学考试,只有20道题。做对一题加5分,做错一题倒扣3分(不做算错)。乐乐这次考试得了84分,那么乐乐做对了多少道题?

解:

如果20题全部做对,应该得20×5=100(分),而实际得了84分,少了100-84=16(分)。做错一题和做对一题之间,相差5+3=8(分),所以少了的16分,也就是做错了16÷8=2(题)。一共20题,所以乐乐做对了20-2=18(题)

抽屉问题

【含义】

在数学问题中有一类与“存在性”有关的问题,如367个人中至少有两个人是同一天过生日,这类问题在生活中非常常见,它所依据的理论,我们称之为“抽屉原理”。抽屉原理又名狄利克雷原则,是符合某种条件的对象存在性问题有力工具。

【数量关系】

基本的抽屉原则是:如果把n+1个物体(也叫元素)放到n个抽屉中,那么至少有一个抽屉中放着2个或更多的物体(元素)。抽屉原则可以推广为:如果有m个抽屉,元素的个数是抽屉个数的k倍多一些,那么至少有一个抽屉要放(k+1)个或更多的元素。

【解题思路和方法】

目前,处理抽屉原理问题最基本和常用的方法是运用“最不利原则”,构造“最不利”“点最背”的情形。例1:


不透明的箱子中有红、黄、蓝、绿四种颜色的球各20个,一次至少摸出多少个球才能保证摸出两个相同颜色的球?

解:

解决这个问题要考虑最不利的情况,因为有4种颜色,想要摸出两个相同颜色的球。那么最不利的情况就是,每种颜色的各摸出一个,这时再摸一个球,一定与前几个球有颜色相同的。因此至少要摸4+1=5(个)球。

例2:



袋子中有2个红球,3个黄球,4个蓝球,5个绿球,一次至少摸出多少个球就能保证摸到两种颜色的球?

解:

解决这个问题要考虑最不利情况,想要摸出两种颜色的球,最不利的情况应该是将一种颜色的球都拿出来时,不论接下来摸的球是什么颜色都与之前颜色不同。因为4种球的个数各不相同,所以最不利的情况应该是先将个数最多的球都拿出来,接下来摸的球都一定与之前颜色不同。因此至少摸出5+1=6(个)球

例3:


一次数学竞赛共5道选择题,评分标准为:基础分5分,答对一题得3分,答错扣1分,不答不得分。要保证至少有4人得分相同,最少需要多少人参加竞赛?

解:

1、本题考察的是抽屉原理的相关知识,解决本题的关键是要知道得分一共有多少种不同的情况,进而从最坏的情况开始考虑解决问题。

2、一共有5题,且有5分的基础分,那么每道题就有1分的基础分。也就相当于答对一题得4分,答错不得分,不答得1分。

这次数学竞赛的得分情况有以下几种:

5题全对的只有1种情况:得20分;

对4题的有2种情况:1题答错得16分,1题没答得17分;

对3题的有3种情况:2题全错得12分,只错1题得13分,2题不做得14分;

对2题的有4种情况:3题全错得8分,只错2题得9分,只错1题得10分;3题全不答得11分;

对1题的有5种情况:4题全错得4分,只错3题得5分,只错2题得6分,只错1题得7分,4题全不答得8分;

答对0题有6 种情况:5题全错得0分;错4题得1分,错3题得2分,错2题得3分,错1题得4分,5题全不答得5分。

我们发现从0分到20分,只有19分、18分、15分这三个分数没有,其它都有,所以一共有20+1-3=18(种)不同的得分。

要保证有四人得分相同,最少需要18×3+1 = 55(人)参加竞赛。

更多优质文章,点击相应标题即可查看。

陈省身谈:数学之美(附视频)

PPT+视频 | 余胜泉:人工智能与教师专业发展创新专题讲座

孙维刚:如何学好初中数学(附视频)

中国高考评价体系下的高考数学全国卷备考策略(附视频)

丘成桐讲数学简史(2小时完整视频)

新教材培训回放视频上线!2020人教版高中各科新教材培训讲座在线看!(附文档)

张景中院士讲座:把数学教育变容易(附视频)

杨岸杰老师讲解2020浙江高考题(视频)

高中数学2020年概率与统计培训视频

李海东:基于数学理解的数学教学(讲座视频+课件)

田刚院士讲座:数学内外(视频+课件)

袁亚湘院士的数学科普报告:数学漫谈,数学无处不在(附视频)

袁亚湘院士《数学漫谈》报告全文(word)

史宁中:漫谈数学的基本思想(含PPT)

葛军:如何学好高中数学(PPT+视频)

小学数学能力培养视频(1—10)

小学数学能力培养视频(11—17)

重磅推荐关注微信公众号:妙解之慧,里面有500多篇优质讲座,视频,一轮二轮三轮复习讲座,各个专题整理等,是教师,学生学习充电的好地方,长按并识别下方图片中的二维码,即可关注,然后查看历史消息即可阅读相关文章。

 THE END 

 ♦ 欢迎分享到朋友圈哦 ♦ 

声明:文章来源网络。仅用于学术交流,版权归作者所有。本公号推送在于传递信息,如存在文章/图片/音视频使用不当的情况,请随时联系管理员处理。免责声明:本文版权归原作者及原出处所有,内容为作者观点,并不代表本公众号赞同其观点和对其真实性负责。如涉及版权等问题,请及时与我们联系,我们将立即更正或删除相关内容。本公众号拥有对此声明的最终解释权。

新教材培训回放视频上线!2020人教版高中各科新教材培训讲座在线看!(附文档)

人教A版高中数学新教材分析(含PPT)

高考中如何有效地利用教材(含PDF)

新教材 新高考 新挑战 新机遇:核心素养背景下的复习备考建议(含PPT)

新教材使用的实践与思考(含文档)

学习新教材,研究新教法(含PPT)

高考数学冲刺策略:读想算写  真讲实练

高考冲刺讲座:模型化与高考全国卷数学

专题讲座:新课标下高三数学教学

高考平面解析几何备考策略

高考讲座:浓缩重点 科学整合 减负增效

高三复习策略:铸魂育人, 关键能力,学科素养

李尚志教授:运算律主宰运算(附视频)

何小亚:数学教学设计中的问题、对策与案例

基于核心素养的课堂教学设计(含PPT)

张景中院士讲座:把数学教育变容易(附视频)

李勇衡水演讲:以改革的姿态迎接新考试改革((强基计划)含PPT)

黄东坡:追求有高度的数学教育

追求诗意的数学教育(含PPT)

张景中院士:什么是“教育数学”

史宁中:基于学科核心素养的教育教学——改造我们的师范教育(含PPT)

史宁中:漫谈数学的基本思想(含PPT)

史宁中教授:做《概率与统计》报告

高考中如何有效地利用教材(含PDF)

杨志明:走出数学整体教学的误区

储朝辉博士谈:“如何教会学生自主学习”(附视频)

新教材 新高考 新挑战 新机遇:核心素养背景下的复习备考建议(含PPT)

新教材使用的实践与思考(含文档)

学习新教材,研究新教法(含PPT)

章建跃:核心素养导向的课堂教学变革(含PPT)

高中数学《概率》教学建议(含PPT)

专题讲座:概率统计高考第一轮复习(含PPT)

新高考数学试卷特点与备考策略(含文档)

基于核心素养的课堂教学设计(含PPT)

试题命制对数学教学的启示(含PPT)

揭秘数学和物理之间的双重“潜伏”

数学考试中的结构不良问题研究

数学考试中的结构不良问题研究

学习方法:中学生10大不良习惯及改正方法

几种高效的听课方法一一一听、视、思并用,真正做到质疑、存疑、解疑

听课:要想学习好,先把课听好

史宁中:基于学科核心素养的教育教学——改造我们的师范教育(含PPT)

史宁中教授:做《概率与统计》报告

访史宁中教授:谈数学基本思想,数学核心素养等问题

访史宁中教授:谈数学基本思想,数学核心素养等问题

史宁中:高中数学课程标准修订与数学核心素养(附PPT)

史宁中:漫谈数学的基本思想(含PPT)

学数学要大量做题吗?史宁中校长谈数学的七个问题

史宁中:数学教学中的若干误区

史宁中:基于学科核心素养的数学课程标准(含PPT)

史宁中——数学核心素养与小学数学教学(含PPT)

开讲啦:张继平感受数学之美

自然中的数学 ▏这些自然界中的几何图形,足够惊艳

孩子了

数学学习的九个境界,你能达到第几境?小平邦彦的故事给我们的启发!

单墫教授手稿:举例子

单墫教授手稿:一个简单的心算题

单墫教授手稿:方程与三角

单墫教授手稿:统一的证明

单墫教授手稿:似乎是显然的

单墫教授手稿:问题,无穷无尽的问题

单墫教授手稿:单位分数——初中生可以研讨的问题

单墫教授手稿:邂逅

单墫教授手稿:最小距离比最大距离

更多单墫教授手稿内容,请查看历史消息。

1

 往期精选 


部分文章推荐阅读,点相应标题即可跳转阅读全文,更多优质文章,可关注《妙解之慧》后,查看历史消息。


1:讲题应如何讲?

2:《妙解之慧》优质学习资源汇总(建议收藏)

3:建议收藏:高中各科思维导图汇总

4:数学科普知识讲座:神奇的圆锥曲线(含PPT)

5:高考全国卷试题分析及2020年备考策略

6:都在谈错题本,但真正好的有几个

7:学会分析,总结,利用好考试的试卷

8:章建跃:理解数学理解学生理解教学(含PPT)

9:写给疫情肆虐中的高三考生

10:高考命题、答题、阅卷过程中的隐藏套路

11:初中三年的数学定理整理汇总

12:小学数学50道经典应用题解题思路+模板

13:孩子不爱说话,并不只是内向那么简单

14:数学复习中的24个问题,你或许需要

15:超全初中物理错题本整理,拿走不谢!

16:数学:听课感觉能听懂,为什么一做题就蒙圈?

17:学习方法:寒假学好数学三部曲

18:赏析数学中的美,太漂亮了

19:干货!中考化学86个考点大汇总(收藏学习)

20:中学数学讲评课基本规范(含PPT)

21:初中英语语法汇总 (系统详细)

22:从核心素养到学生智能的培养(含PPT)

23:初中化学全册思维导图集合!在家自学必备!

24:教育教学中的心理学智慧和心理学效应(含PPT)

25:“我懂你”,用古诗词的23种说法,真的太美了!

26:张景中院士写给小学数学教师们:感受小学数学思想的力

27:章建跃:理解数学理解学生理解教学(含PPT)

28:章建跃:注重数学的整体性,提升系统思维水平(含PPT)

29:从核心素养到学生智能的培养(含PPT)

30:数学教学——到底该教什么?

章建跃:核心素养导向的高中数学教材变革

教材分析 | 吴立宝等:数学教材分析的五个视角

教材分析 | 吴立宝等:数学教科书隐性三维结构分析

章建跃:高中数学新教材总体介绍(含文档)

王尚志:数学课标修订与数学核心素养,课程变化(含文档)

李大潜院士:上教版高中数学三期教材培训(含PPT)

新上教高中数学必修第一册彩版(文末附下载链接)

转载|基于核心素养的教育教学(全文听写版)

葛军:高中数学新课标教材介绍(函数)

高夯教授:数学的价值

教材分析 | 吴立宝,曹一鸣:数学教材分析的八个策略

高中教材总体介绍(含PPT)

王建磐教授上教版高中数学三期教材培训:编撰特色与使用建议(含PPT)

往期文章快速查找指南,关注公众号后,点击最上方搜索,输入关键字,即可阅读相关文章。

单墫教授:数学是思维的科学

单墫:数学学习与解题

数学大师陈省身的家教智慧:不是一定要读书才好

张景中院士:华为为什么要“囤”700名数学家

珍贵视频:华罗庚教授讲数学,能听懂

高考状元张景中院士的故事,看看五十年代的高考阅卷!

单墫教授解答高考数学全国2卷最后一题(手稿)

高中数学靠“悟”不靠“练”,在于“走心”但不能“心走”!

全国政协委员、中国联通研究院院长张云勇教授讲数学

高中数学2020年概率与统计培训视频

葛军:如何学好高中数学(PPT+视频)

开讲啦:张继平感受数学之美

西北工业大学数学与统计学院教授、博士生导师彭国华讲解高考数学命题

李海东:基于数学理解的数学教学(讲座视频+课件)

田刚院士讲座:数学内外(视频+课件)

老师,你教的东西有用吗?---教育的意义【值得观看】

袁亚湘院士的数学科普报告:数学漫谈,数学无处不在(附视频)

数学科普知识讲座:神奇的圆锥曲线(含PPT)

如何打磨数学试题 北京大教育考试评价中心

华东师大博导汪晓勤:数学符号史在高中数学教学中的应用与价值

数学教学——到底该教什么?
代钦教授:数学文化课(含PPT)

人教社专家权威解读新教材:一至十章教材介绍课件

细节决定成败,考场各种突发问题应对36计,有备无患

李文革——“数学试题”命制技术(附两本命题书供参考)

建议收藏:高中各科思维导图汇总

数学科普知识讲座:神奇的圆锥曲线(含PPT)

史宁中:基于学科核心素养的数学课程标准(含PPT)

从核心素养到学生智能的培养(含PPT)

教材培训:“概率与统计”主题教材解读(含文档)

教材培训:“几何与代数”主题教材解读(含文档)

章建跃:高中数学新教材总体介绍(含文档)

新课标,新高考,新作为

国庆假期怎么安排?这份假期每日学习计划请收好

章建跃:以课本为本才是好数学教学

章建跃:高中数学新教材总体介绍(含文档)

章建跃:核心素养导向的高中数学教材变革

章建跃:深化数学课程改革,落实数学核心素养(含PPT)

章建跃:数学思想方法的力量

章建跃——追求数学教育的本来面目

章建跃:研究三角形的数学思维方式

章建跃:中学数学核心概念,思想方法的理解和教学设计(可分享PPT)

章建跃:数学知识的理解和教学

章建跃:深化课程改革 提高数学教育教学质量(附视频)

章建跃:核心素养理念下的数学教学变革

章建跃:理解数学理解学生理解教学(含PPT)

数学学习与智慧发展(人教社章建跃)

章建跃:注重数学的整体性,提升系统思维水平(含PPT)

目前设有初高中教师交流群,群里不定期公益分享一些优质的学习资源,不作任何利益,想要进群交流的朋友可,长按并识别文末二维码,添加微信,备注地区身份,通过验证后,回复需要进的群。

一点数学学习方法:

水有源题有根,茫茫题海寻根悟法方是岸,若将形形色色的试题分门别类,剖析其相似,相关性,同源性。探索一题多解,尝试一题多变,感悟多题共法,多做一些;基础和能力,运算和思维都好的妙题,再从解法探究,一般推广,类比延拓三个方面展开,深度研究,意在学会分析题意,转化问题,追根溯源,触类旁通,从静态的文本俩都想到动态的思维活动,把数学冰冷的美丽里,变成火热的思考,就能举一反三,跳出题海,精学一题,妙解一类,固化于型,内化于心,达到事半功倍,融会贯通,高效学习的目的!


写给学生:成功的路上没有捷径,需脚踏实地,一天进步一点,成在坚持,难再坚持,贵在坚持,自己不要放弃自己就行。

添加好友,相识是缘,感恩遇见,添加时,请备注地区身份。






      

您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存