查看原文
其他

五年级数学开学第1课【课标解读、教材分析、教学设计、课堂实录】

阳光教研 2023-02-05
阳光教研

手机在手,备课无忧,学习不愁

点击上方蓝字,随时随地备课

请各位老师点击上方蓝字关注阳光教研,及时了解最新内容。


关注“阳光教研”,点“往期文章”,必有你所需。

(提示:文末有教学课件下载方法)  


一、课标解读

       

《小数乘法》课标解读

一、课标要求

《义务教育数学课程标准(2011年版)》在“学段目标”的“第二学段”中提出了“掌握必要的运算技能”“理解估算的意义”“能探索分析和解决简单问题的有效方法,了解解决问题方法的多样性”“能回顾解决问题的过程,初步判断结果的合理性”。

《义务教育数学课程标准(2011年版)》在“课程内容”的“第二学段”中提出了“能分别进行简单的小数和分数(不含带分数)的加、减、乘、除运算及混合运算(以两步为主,不超过三步)”“能解决小数、分数和百分数的简单实际问题”“经历与他人交流各自算法的过程,并能表达自己的想法”“在解决问题的过程中,能选择合适的方法进行估算”。

二、课标解读

“小数乘法”是数与代数领域“数的运算”中的重要内容。通过本单元的教学,要使学生掌握有关小数乘法的“运算技能”,培养学生的“运算能力”。要引导学生“探索分析和解决”简单小数乘法问题的有效方法,了解解决问题方法的多样性,回顾解决问题的过程,初步判断结果的合理性,增强学生发现和提出问题、分析和解决问题的能力,培养学生的“应用意识”。

下面就围绕“运算能力”“问题解决”及“应用意识”等课标内容,结合“小数乘法”单元的教学,进行简要解析。

(一)“运算能力”的解读及教学实施

《义务教育数学课程标准(2011年版)》指出:运算能力主要是指能够根据法则和运算律正确地进行运算的能力。培养运算能力有助于学生理解运算的算理,寻求合理简洁的运算途径解决问题。通过上面这段表述,我们可以明确这样几个关键词:正确、合理、灵活。

1.正确——不但要会算,而且要算得“对”

数学的概念、公式、法则等是进行数学运算的依据。数学运算的实质就是根据这些运算的依据,从已知数据及算式中推导出结果。因此,如果学生对数学运算法则掌握不到位,就会出现数学运算中的知识性错误;除此之外,基本计算不过关、计算习惯不良、口算能力不强等都会影响运算结果的正确性,影响学生运算能力的培养。因此,我们要引导学生在理解算理的基础上掌握必要的运算法则,养成严谨认真的良好计算习惯,真正做到不但会算,而且算得“对”!

在本单元教学中,要引导学生结合实例自主归纳概括小数乘法的计算法则,在理解的基础上进行必要的记忆;要促使学生养成良好的学习习惯,计算前认真审题,计算后及时检查,检查小数点位置是否正确、数据有无错漏、计算结果是否合理;要指导学生规范的作业书写格式,准确地表达运算的思路和计算步骤。

2.合理——不但要会算,而且要算得“快”

学生光会运算还不够,还要明确运算过程中的依据和合理性,只有这样“合理”地进行运算,运算的速度才能更快一些,效率才能更高一些。要使学生学会分析运算条件,探究运算方向,选择运算方法,使运算符合算理,合理简洁。

在本单元教学中,要使学生明确小数乘法的“算理”——因数与积的变化规律。当然,这里建议将算理蕴含在计算过程中,让学生在计算中明确这样算的道理,而不需要将算理单独提出来进行专门的教学。

3.灵活——不但要会笔算,而且要学会“估算”

估算指的是学生懂得什么情况下宜于估计而不必作准确计算,并会灵活使用。《义务教育数学课程标准(2011年版)》在三个学段中对估算都提出了明确的要求,可以说,估算也是重要的运算技能,是衡量学生数学运算能力高低的一个重要标准。因此,我们要重视估算教学,使学生理解估算的意义

本单元中,相关估算的内容教学我们可以关注以下三点:

(1)将估算定位在解决问题的层面,即用估算的策略来解决问题。它的前提是不需要得出一个具体的准确值,不是单纯地为估算而“估算”。

(2)运算的数据不便于直接口算,对其中的一个或几个数据进行适当地调整(注意:这里是“适当地调整”),达到能口算得出结果的目的。

(3)不要过分强调“四舍五入”法,避免产生负迁移。

(二)从“问题解决”的角度渗透“应用意识”

1.“问题解决”内容的教学是形成学生“四能”的重要途径

《义务教育数学课程标准(2011年版)》在“学段目标”第二学段中对“问题解决”的教学提出了明确的要求:尝试从日常生活中发现并提出简单的数学问题,并运用一些知识加以解决;能探索分析和解决简单问题的有效方法,了解解决问题方法的多样性;经历与他人合作交流解决问题的过程,尝试解释自己的思考过程;能回顾解决问题的过程,初步判断结果的合理性。

对照“课标”要求,我们要让学生认识到在现实生活中蕴涵着大量与小数乘法有关的实际问题。

(1)从数学的角度发现和提出问题。数学来源于生活,教材提供了学生熟知的情境:买风筝、刷油漆、鸵鸟摆脱野狗的追赶、购物等,让学生能够用数及其关系表达和交流信息,从数学的角度发现和提出问题,使得学生感受到数学就在我们的生活中,从而在生活中学习数学、运用数学。

(2)用数学的方法分析和解决现实生活中的问题。在例5中,鸵鸟用野狗1.3倍的速度摆脱野狗的追赶。通过之前对整倍数的认识迁移、体验用乘法解决小数倍的数学问题。例6通过“狗约有多少亿个嗅觉细胞”等,使学生认识到对于生活中的许多小数,我们并不一定都要知道它们的准确值,只需知道它们的近似值就可以了,所以可以根据需要求积的近似数。

2.将“应用意识”的培养贯穿教学的始终

《义务教育数学课程标准(2011年版)》中对“应用意识”这一核心概念的表述是:应用意识有两个方面的含义,一方面,有意识利用数学的概念、原理和方法解释现实世界中的现象,解决现实世界中的问题;另一方面,认识到现实生活中蕴涵着大量与数量和图形有关的问题,这些问题可以抽象成数学问题,用数学的方法予以解决。在整个数学教育的过程中都应该培养学生的应用意识,综合实践活动是培养应用意识很好的载体。

对照“课标”要求,我们要有意识地培养学生的数学应用意识,使他们体会到数学的应用价值。例8的解题过程通过两种不同的估算策略,同样是“凑整”,一种是“不超过”, 一种是“超过”,最终都应用它们解决了“钱够不够”的问题。这样通过对两种不同策略的比较与探讨,既提升了数学的应用价值,又培养了学生的应用意识。


作者:湖北省武汉市青山区钢花小学 杨 慧 等(初稿)、湖北省武汉市青山区教研室 刘小宝(修改)、湖北省武汉市教育科学研究院 马青山(统稿)

(以下内容作者相同)


二、教材分析与重难点突破

《小数乘法》教材分析

本单元的教学内容主要有:小数乘法、积的近似数、整数乘法运算定律推广到小数、运用小数乘法解决简单的实际问题等。

上述内容是在学生学习了整数的四则运算、小数的意义和性质以及小数加减法的基础上进行教学的。由于小数和整数都是按照十进制位值原则书写,所以小数乘法的竖式形式、乘的顺序、积的对位与进位都可仿照整数乘法的相应规则进行,只要处理好小数点就行了。因此,本单元在教材的编排非常注重加强小数乘法与整数乘法的联系,意图是引导学生将整数乘法的经验迁移到小数乘法中来,提高学生的学习能力。

一、小数乘法

通过本单元的教学,重点是要使学生理解和掌握小数乘法的算理和计算方法,能正确地进行小数乘法的计算和验算;会用“四舍五入”法截取积(小数)的近似值;理解整数乘法运算定律对于小数同样适用,并会运用这些运算定律进行小数乘法的简便运算;让学生在解决有关小数乘法的简单实际问题过程中,理解估算的意义,初步形成估算意识,提高解决问题的能力;让学生经历自主探索小数乘法计算方法、理解算理和解释算法的过程,体会转化的数学思想,初步培养学生学习的迁移能力和推理能力。

本单元教材在编排上以问题解决为背景,选择了与“元、角”(买风筝)、“米、分米”和“千克、克”(刷油漆)等有关的“进率是十的常见量”作为学习素材,引入小数乘法的学习,顺利建立了小数乘法与整数乘法的联系,利于学生将新知纳入已有的认知系统中。

因为小数的书写方式、进位规则均与整数相同,所以,教材紧扣两者的密切联系,在编排上注重应用转化和对比的方法,引导学生概括小数乘法的计算方法。具体体现在:

1.引导学生用转化的方法,将小数乘法转化为整数乘法。在例1的教学中,教材着重让学生理解以“元”作单位的小数乘法可以转化成以“角”作单位的整数乘法进行计算,运用现实的具体经验进行小数与整数的转化,为例2将小数乘法转化为整数乘法做准备。在例2的教学中,教材脱离具体生活情境,借助例1的计算经验,通过两个小朋友的对话引导学生思考:“能不能转化成整数来计算?”,即“如何将未知转化为已知?”,引导学生用转化的方法弄清小数乘整数的算理和计算方法。在例3的教学中,教材也是通过两个小朋友的对话引导学生思考:“两个因数都是小数怎么计算呢?”“也可以把它们看作整数来计算吗?”引导学生在学习例2的基础上再一次用转化的方法,将两个因数同时转化成整数,再来进行计算。

2.引导学生用对比的方法,正确处理积中小数点的位置问题。教材在例3的“做一做”后,安排了一个探讨性的问题:“观察例3和上面各题中因数与积的小数位数,你能发现什么?”采用对比的方法,引导学生自主找出因数和积的小数位数之间的关系,然后利用这一关系,领悟确定小数点位置的方法,为归纳小数乘法的计算方法做准备。教材在例4的“做一做”中也安排了一个探索规律的练习,让学生先计算两组题,再引导学生用对比的方法,发现积和因数的大小关系。

3.引导学生按一定顺序概括小数乘法的一般计算方法。教学例3和“做一做”之后,在让学生讨论、归纳的基础上,引导学生自主、有序地概括出小数乘法的计算方法。教材以记录讨论结果的形式,呈现不完全的计算法则的文本,让学生在理解的基础上叙述或填写法则的关键词。这样,既可以让学生了解计算法则的来源,理解其含义,防止死记硬背法则,又起到促进学生对具体计算案例的特点进行总结、归纳、抽象、概括的作用,获得对小数乘法的意义和算法的体会和理解,培养学生探索、总结规律的数学学习方法。

在掌握了小数乘法计算的一般方法之后,教材以“非洲野狗追鸵鸟”的童话故事为背景,图文并茂地引入小数倍的学习,帮助学生扩充“倍”的认识,从具体事件中领会“倍”不仅可以是整数,也可以是小数,有时用小数倍表示两个数量之间的关系更为直观。并且结合计算“我算得对吗?”提出了验算的要求,一方面强调了验算的作用,另一方面也是培养学生的验算习惯。教材呈现了三种验算方法,这里不要求学生一定要用哪种方法验算,只要能自觉地用合适、有效的方法验算就行。

二、积的近似数

例6是教学“积的近似数”,教材首先说明求“积的近似数”的背景与一般方法,指出“可以根据需要,按‘四舍五入’法保留一定的小数位数,求出积的近似数。”接下来,教材创设了一个“缉毒犬查违禁品”的情境,为学生求积的近似数提供素材,同时让学生了解到狗的嗅觉非常灵敏。

例题给出的信息“人的嗅觉细胞约有0.049亿个”和要解决的问题“狗约有多少亿个嗅觉细胞?”可以使学生认识到实际生活中有些小数并不一定都要知道它们的准确值,只要知道它们的近似数就可以了,再次使学生感受到求积的近似数是“实际应用”的需要。

由于学生已有“求一个小数的近似数”的基础,因此,在截取积的近似数时,可以让学生自主尝试,然后解释截取近似数的过程和理由,并组织学生及时进行交流和评价,让学生在互动中自主掌握求积的近似数的方法。

三、整数乘法运算定律推广到小数

教材分两部分编排:前一部分是将整数乘法运算定律推广到小数;后一部分是应用乘法运算定律进行简便计算。

在教学将整数乘法运算定律推广到小数时,教材首先由小精灵直接说明“小数四则混合运算的顺序跟整数是一样的。”接下来,结合具体算式说明整数乘法运算定律对于小数乘法也适用。教材分两个层次编排:①给出三组不同类型的算式,让学生观察、计算,找出每组中两个算式的关系;②用归纳的方法类推出“整数乘法的交换律、结合律和分配律,对于小数乘法也适用。”通过这两个层次的活动,将整数乘法运算定律推广到小数,同时也培养学生合情推理的能力。

在教学应用乘法运算定律进行简便计算时,教材安排了应用乘法交换律和乘法分配律进行简便计算的例子,使学生体会到根据算式的结构和数据的特点,应用乘法运算定律进行变换,可以使一些比较复杂的计算变得简便。

四、解决问题

教材安排了用估算解决实际问题和解决分段计费的实际问题,一方面进一步巩固对小数乘法的认识,另一方面培养学生灵活解决问题的能力。

例8是教学用估算解决实际问题,教材创设了超市购物的情境,解决“剩下的钱还够买一盒10元的鸡蛋吗?够买一盒20元的吗?”这样的问题与现实生活有着密切的联系,不仅可以激发学生的学习兴趣,而且可以引导学生根据具体问题和数据选择恰当的估算策略,对培养学生灵活运用数学知识解决实际问题的能力有着重要的价值,可以使学生充分体会估算在解决实际问题的应用。

教材依然是通过“阅读与理解”“分析与解答”“回顾与反思”三个步骤呈现解决问题的过程。在“阅读与理解”中,指导学生将繁杂的信息用表格的形式分类表示,清晰地呈现出各种信息之间的关系,尤其是单价、数量和总价之间的关系。在“分析与解答”中,教材呈现了解决问题的多种方法,使学生体会到要根据具体问题和数据选择适当的估算策略,体会到用估算解决问题的方法和价值。在“回顾与反思”中,教材不仅引导学生发现这样的问题用估算来解决更方便,而且引导学生积极思考两种不同估算方法的区别,从而帮助学生体会不同估算策略的思路与价值,有效培养学生的估算意识和应用意识。

例9是解决分段计费的实际问题教材结合本单元的知识和生活实际,编排了现实生活中乘出租车付费的问题,进一步提升学生解决问题的能力。分段计费问题的本质是分段函数问题,也是现实生活中经常遇到的实际问题,需要根据收费标准及相关信息确定如何分段,再选择恰当的方法来解决。

教材依然是通过“阅读与理解”“分析与解答”“回顾与反思”三个步骤呈现解决问题的过程。在“阅读与理解”中,引导学生收集信息(可以用摘录的形式),理解题意(重点是理解收费标准),明确要解决的问题。在“分析与解答”中,首先要引导学生分析各个数量之间的关系,明确解决问题的思路和方法,再来列式解答。教材呈现了两种不同的思路和方法,一种是按行驶里程(前3 km、后4 km)分段计算,另一种是先假设(都按每千米1.5元计算)再调整(加上少算的)进行计算。在“回顾与反思”中,教材引导学生建立解决这类问题的一般方法,并根据得到的结果完成出租车价格表,让学生观察表中的数据,探索其中的规律。教师还可以用图象来表示行驶里程与出租车费之间的关系,直观体会分段计费的特点,让学生直观感受其中的规律,初步体会函数思想。


《小数乘法》重难点突破



一、理解小数乘整数的算理,掌握小数乘整数的一般方法

突破建议:

1.充分利用主题图展示的数学信息(风筝单价及要解决的问题),为学生理解算理提供感性支撑。教学中可以放手让学生利用已有的知识经验独立解决“买3个蝴蝶风筝多少钱”的问题,学生解答后,从中选出一种较为简单的方法(如35角×3)进行重点分析、说理,引导学生用简洁的语言进行总结和概括:先把3.5元转化为35角,再计算35角×3,最后将结果105角转化为10.5元。从而通过“元、角”这些具体量的进率关系,初步为算理的理解提供感性支撑,为后面例2的教学做好铺垫。

2.引导学生运用“转化”的思想方法,通过旧知迁移,理解和掌握新知。要注意引导学生紧紧抓住例1中的计算经验,特别是“将3.5元转化为35角”的经验来学习例2。放手让学生应用已有的整数乘法经验自主计算“0.72×5”,列出竖式,并尝试对过程做出合理的解释,有效地突破难点。

3.及时引导学生梳理和总结小数乘整数的竖式计算要点。在学生理解上述算理的基础上,重点引导学生归纳用竖式计算的要点:①按整数乘法的规则进行计算;②处理好积中小数点位置的确定,因数中一共有几位小数,积中也应有几位小数;③如果积的小数部分末尾有0,应根据小数的基本性质去掉小数末尾的“0”。

二、积的小数数位不够时如何确定小数点的位置

突破建议:

1.在教学小数乘小数及相应的练习中,应结合具体的计算实例组织学生观察、比较因数与积的小数位数,引导学生发现因数与积的小数位数之间的关系,为正确确定积的小数点的位置提供操作依据。

2.在教学例4时,可以先放手让学生按照一般方法计算,引出“乘得的积的小数位数不够,怎么点小数点?”的问题,教师再来引导学生去寻找解决问题的办法,让学生自己想到可以根据小数点移动引起小数大小的变化规律来解决问题,理解乘得的积的小数位数不够时,应该先在前面用0补足,再点小数点,让学生经历发现问题——解决问题的学习过程,留下较为深刻的印象。

3.设计具有针对性的练习(不一定要完整的计算),让学生明确:①一定要数清楚两个因数中小数的位数,弄清楚应补上几个0;②确定积的小数点位置时,应先点上小数点,然后再把小数末尾的0去掉。

三、理解“倍”可以是小数,能解决求一个数的小数倍的实际问题,掌握计算方法

突破建议:

1.激活已有经验,帮助学生扩充“倍”的认识。学生在第一学段已经对“倍”有了初步认识,对两个数量之间“倍”的关系并不陌生,知道求一个数的几倍是多少用乘法计算。在本课教学时,教师应帮助学生激活已有的旧知,让学生先解决整数倍的数学问题,并说一说列式的理由,以利于学生在分析、解决“小数倍”的问题时,能从对整数倍的认识扩充到对“小数倍”的认识。

2.借助具体事例,引导学生理解小数倍的含义。在教学例5时,可以借助生动的情境,让学生用自己的方式读题,再用自己的话表述题意。在表述“鸵鸟的最高速度是非洲野狗的1.3倍”时,应尽可能给学生创设表述的空间,让学生充分表述自己的理解,着重是对“1.3倍”含义的理解,从具体事件中领会“倍”不仅可以是整数,也可以是小数,有时用小数倍表示两个数量之间的关系更为直观。

四、理解求积的近似数往往是“实际应用”的需要

突破建议:

1.在教学“积的近似数”时,可以明确揭示求“积的近似数”的背景与一般方法:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。

2.在例题教学中,可借助教材创设的情境,从例题给出的信息“人的嗅觉细胞约有0.049亿个”和要解决的问题“狗约有多少亿个嗅觉细胞?”使学生认识到,生活实际中有些小数我们既无可能、又无必要知道它们的准确值,只要知道它们的近似数就可以了,使学生感受到求积的近似数是“实际应用”的需要。

3.选择、设计一些与求积的近似数有关的实际问题,让学生在解决问题的过程中辨析、体会。如:教材第13页第3题求“这台计算机有多重?”为什么要“得数保留整数”?又如:教材第11页“做一做”第2题求“买2.5 kg应付多少钱?”为什么没有明确提出求近似数的要求,但也要自觉地“得数保留两位小数”?使学生在解决问题的过程中,体会到求积的近似数不是随意的要求,而确实是“实际应用”的需要。

五、应用乘法运算定律进行小数的简便计算

突破建议:

1.在教学将整数乘法运算定律推广到小数时,教师要通过具体的例子引导学生亲身经历“推广”的过程,在“推广”的过程中理解整数乘法运算定律对于小数乘法也适用,使学生明确,现在乘法运算定律中数的适用范围不仅包括整数,也包括小数

2.在教学应用乘法运算定律进行小数的简便计算时,教师要重视培养学生思维的逻辑性,着重引导学生交流简便计算的思维顺序,根据算式的结构和数据的特点怎样算比较简便?第一步应该怎样将算式变换?应用的是哪一条运算定律?第二步又该怎样做?

3.应用乘法分配律进行简便计算是学生容易出错的地方,教师要注意分析学生出错的原因,加强就题说理练习。在乘法分配律的应用中,既有乘法分配律的正向应用,也有乘法分配律的逆向应用。因此,要适当进行乘法分配律算式结构的正向和逆向的变换训练,提高学生应用乘法分配律解决问题的能力。

六、根据实际问题和数据选择适当的估算策略

突破建议:

1.关注估算思路,注重方法指导。在教学过程中,引导学生完整地叙述自己的估算思路,教师组织学生及时反思“这样估算行吗”“这样估算有什么好处”“有什么需要改进的地方”等问题,及时有效地对学生的估算思路进行指导。

2.加强对比沟通,体会策略多样。在教学过程中,由于学生生活经验不同,会产生不同的估算方法,教师要主动对典型估算方法进行展示,引导学生体会估算方法的多样性。与此同时,还需要加强不同估算方法之间的对比沟通,如“这两种估算方法的相同点和不同点是什么”,从而让学生体会估算的本质就是“近似计算”,根据具体数据和实际问题选择不同的处理方法,就会产生不同的估算策略。

七、引导学生对分段计费问题的规律进行探寻

1.要重视引导学生理解题意,尤其是对“收费标准”的理解,因为它直接关系到如何根据里程确定怎样分段。教学中,教师可以设计如下问题:①“3 km以内7元”是什么意思?②从什么时候开始按每千米1.5元收费?③假如行驶了3.1 km,应付车费多少元?④行驶3.1 km和行驶4 km,应付的车费同样多吗?为什么?通过这些理解性的问题帮助学生明确收费标准。

2.在完成了例题的“分析与解答”后,教师可沿用例题情境进行适当的变式练习,如:①如果行驶的里程是8.4 km,你们还能用刚才的方法计算出车费吗?②如果行驶的里程是9.8 km呢?让学生通过算式的对比,发现“分段计费”的方法都是用7元加后段里程车费,用“先假设再调整”的方法都是用假设车费再加上2.5元。在学生发现规律后,再来引导学生进一步探索,分析其中的原因。

3.在例题的“回顾与反思”中,教师不仅要让学生完成教材上的出租车价格表,还应引导学生观察表中的数据,探索其中的规律。教师也可以用图象来表示行驶里程与出租车费之间的关系,让学生直观感受分段计费的特点和规律。


三、教学设计

(以下内容仅供参考,请结合学校学生实际情况修改,忌“拿来主义”)

(文末有课件下载方法)

《小数乘法》教学设计(第1课时)



教学内容人教版小学数学教材五年级上册第2~3页例1、例2及“做一做”,练习一第1~5题。
  教学目标

1.使学生理解小数乘整数的算理,掌握小数乘整数的一般方法,会比较熟练地进行笔算。

2.使学生经历将小数乘整数转化为整数乘整数的过程,自主探索小数乘整数计算方法的过程,渗透转化的数学思想,培养简单的逻辑推理能力。

3.使学生体会小数乘法在实际生活中的应用,感受数学源于生活,生活需要数学,形成积极的学习态度。

教学重点:掌握小数乘整数的一般计算方法。

教学难点:理解小数乘整数的算理。

教学准备:课件。

教学过程

一、情境引入,提出问题

(一)课件呈现,寻找信息

1.课件呈现“放风筝”的情境以及各种不同形状的风筝。

2.课件呈现“买风筝”的情境(例1的主题图),画面上醒目地显示四种形状各异、价格不同的风筝。

3.设问:从图中你能看出哪些数学信息? 

(二)提出问题,揭示课题

1.这节课我们就一起先来解决“买3个蝴蝶风筝多少钱”的问题,你能列出算式吗?(教师板书或PPT课件呈现:3.5×3=)

2.追问:这个算式和我们以前学过的算式有什么不同呢?

3.引导:今天我们就来学习小数乘整数。(板书课题:小数乘整数)

二、自主尝试,感悟算理

(一)感知算理

1.算一算:3.5×3,可以怎样计算?

给足时间,让每一位学生根据自己的知识和经验独立计算出买3个蝴蝶风筝所需的钱数。教师巡视,注意发现学生中的不同计算思路。

2.说一说:你是怎样计算的?

学生的计算思路可能有:用加法进行计算;改写为复名数进行计算;化“元”为“角”进行计算等。

(二)重点分析、研讨化“元”为“角”算法的算理

1.组织全班学生对上述多种不同解法逐一进行分析、评价和充分肯定。

2.引导学生着重分析化“元”为“角”的计算方法。

(1)师:上述几种算法中,你认为哪种算法比较简单?这种算法中的关键是什么?

(2)学生分析、对比、讨论后,引导学生用简洁的话总结、概括:先把3.5元转化为35角,再计算35角×3,最后将结果105角转化成10.5元。

(3)教师边小结边适时板书(或PPT课件动态呈现)如下竖式计算过程:

(4)小结:刚才我们在解决“买3个蝴蝶风筝多少钱”的问题时,想到了各种不同的计算方法。我们发现以“元”作单位的小数乘整数,可以转化成以“角”(或“分”)作单位的整数乘整数来进行计算。

【设计意图】依托现实情境,让学生利用已有的知识经验,用自己理解的方法自主解决问题。在充分肯定学生的其他合理方法之后,着重分析和评价化“元”为“角”的算法,引导学生总结、概括这种算法的思考过程,体会小数乘法和整数乘法的联系,感受小数乘整数还可以转化成整数乘整数进行计算,初步感悟小数乘整数的算理和算法,培养学生的数学思维能力。

(三)巩固化“元”为“角”的计算方法

1.第2页“做一做”第1题。

(1)学生独立完成,教师指名演板。

(2)重点评价“把4.6元看作46角”进行计算的方法。

2.第2页“做一做”第2题。

(1)学生独立完成。

(2)组织学生交流解决问题的思路和方法(主要关注下面两种方法)。

方法一:先算出具体的钱数6.4元×7=44.8元,再与40元进行比较,做出判断。

方法二:直接通过估算解决,一个燕子风筝的价格是6.4元,超过了6元,买7个就超过了42元,所以40元不够。

(3)拓展:50元够吗?

三、运用转化,探究算法

(一)动态呈现小数乘整数的过程

1.出示算式0.72×5=?,提问:“0.72不是钱数,怎样计算?”

2.让学生独立思考,再引导学生提出:“能不能转化成整数来计算?”

3.学生尝试列竖式计算。(教师巡视,了解学生的计算方法。)

4.小组交流计算方法。

5.学生全班集体交流转化过程和计算方法,教师适时板演(或PP课件演示)乘法竖式计算过程,帮助学生理解算理算法。

(教师重点引导学生理解三点:怎样把因数0.72转化成整数?乘得的积应如何处理?积末尾的“0”如何处理?从而使学生更好地理解算理。)

由于因数0.72化成整数72必须“×100”,所以要使积不变,积360应“÷100”。

(二)将乘得的积化成最简小数

请学生观察乘得的积“3.60”,提问:3.60是最简小数吗?(不是!)提醒学生,乘得的积如果不是最简小数,可以根据小数的基本性质将积中小数末尾的0去掉。

(三)小结小数乘整数的一般方法

1.引导学生回顾3.5×3、0.72×5的计算过程。

2.提问:“想一想,在计算小数乘整数时,你先做什么?再做什么? 最后又做什么?”

3.引导学生在理解的基础上归纳小数乘整数的一般方法:

(1)先将小数转化为整数;

(2)按整数乘法算出积;

(3)再确定积的小数点位置。(因数有几位小数,就从积的右边起数出几位,点上小数点。若积的末尾有“0”,末尾的“0”可以去掉。)

四、拓展应用,巩固新知

(一)专项练习

1.小数乘整数与整数乘整数的对比。(第3页“做一做”第1题)

(1)引导学生审题,明确题目要求,学生独立完成。

(2)组织学生交流、讨论,归纳小数乘整数与整数乘整数的不同:小数乘整数中有一个因数是小数,整数乘整数中两个因数都是整数;小数乘整数的积中,若小数末尾有0,这个0可以去掉,但整数乘整数的积末尾的0不能去掉。

2.确定积的小数点。(第3页“做一做”第2题)

(1)学生独立完成。

(2)组织学生交流:你是怎样确定积的小数点的位置的?积末尾的0是怎样处理的?

(二)计算练习(第3页“做一做”第3题)

1.学生独立完成,教师巡视,了解学生计算情况。

2.组织学生交流,着重交流第二个因数是两位数的两道小数乘法计算题(2.3×12和3.13×53)是怎样计算的。

(三)趣味练习(智慧岛)

1.小狗登城堡。

2.小金鱼戏水。

3.小蜜蜂采蜜。

(四)应用练习

1.练习一第3题。

(1)引导学生正确用合适的方法估计自己家到学校的路程。如:用步测的方法估计,知道自己的步长约为0.6 m,从自己家到学校约走多少步,用步长0.6 m乘走的步数,就得到自己家到学校的大致路程。

(2)通过计算自己每天、每周上学要走的路程,巩固小数乘整数的计算方法,加深对一千米有多长的具体的感受。

2.练习一第4题。

(1)第4题是根据第一列的积,写出其他各列的积。

(2)本题利用表格的形式,让学生在按从左到右的顺序逐列写出积的过程中,自觉地应用积的变化规律,并打通小数乘法与整数乘法之间的联系,体会到小数乘法与整数乘法有什么相同和不同。

五、课堂总结,深化新知

这节课我们学到了什么?你是怎么学会的?

六、课外作业

1.练习一第1、5题。

2.练习一第2题,是联系学生的主要学习资源——课本进行的计算活动,应让学生先自己去了解五门学科课本的单价,然后再计算、填空。




《小数乘法》教学设计(第2课时)


教学内容:人教版小学数学教材五年级上册第56页例3、例4做一做,练习二第15题。

教学目标

1.通过旧知迁移,引导学生自主探究、逐步理解小数乘小数的算理,掌握基本算法。

2.使学生掌握在确定积的小数点位置时,小数位数不够的,要在前面用0补足;引导学生发现一个因数比1大(或小)时,积和另一个因数的大小关系。

3.培养学生运用迁移的数学思想解决新问题的能力。

教学重点:小数乘小数的计算方法。

教学难点:小数乘法中积的小数位数和小数点位置的确定。

教学准备:课件、课本。

教学过程:

一、类比迁移,情境展开

教学例3。

1.出示例题。

(1)师:同学们,最近我们要给学校宣传栏刷油漆,你能帮忙算算需要多少千克油漆吗?

(2)师:在计算需要多少千克油漆之前,需要先算出什么呢?

(3)板书(或用PPT课件演示):2.4×0.8=________

2.尝试计算。

1)师:同学们,请观察这个小数乘法算式,它与我们上节课学习的小数乘法有什么不同?(两个因数都是小数。)

2)师:我们上节课学习的小数乘整数是怎样计算的?那两个因数都是小数又怎么计算呢?

3)师:小数乘整数是把小数转化成整数进行计算的,现在能否还用这个方法来计算2.4×0.8呢?如果能,应该怎样做?

4)指名学生口答,教师适时板书(或PPT课件演示)学生的讨论结果。

3.理解算理。

引导学生得出:先把第一个因数2.4乘10变成24,积就乘了10;再把第二个因数0.8乘10变成8,积就又乘了10,这时的积就乘了100。要得到原来的积,就应把乘得的积192除以100,得1.92。

4.进一步明确算理(两个因数的小数位数不同)。

(1)计算出了宣传栏的面积后,怎样计算需要多少千克油漆呢?

(2)板书(或用PPT课件演示):1.92×0.9=________

(3)师:这道题也可以先按整数乘法计算吗?积里的小数点应该点在哪里呢?

【设计意图】在给宣传栏刷油漆的问题背景下,迁移已有的小数乘整数的经验,为学生进一步探究小数乘小数的计算方法奠定坚实的基础。

二、深化探究,总结算法

(一)探究因数与积的小数位数的关系

1.学生独立完成第5页的“做一做”。

2.师:观察例3及“做一做”各题中因数与积的小数位数,你能发现什么?

(二)小结小数乘法的计算方法

1.组织学生回顾、讨论小数乘法是怎样计算的。

2.组织学生汇报、交流自己的计算方法。

(1)师:你是怎样计算的?(先按整数乘法算出积,再点小数点。)

(2)师:怎样确定积的小数点的位置?(点小数点时,先看因数中一共有几位小数,就从积的最右边起数出几位,再点上小数点。)

3.根据学生的讨论和交流,逐步归纳概括出小数乘法的计算方法,并让学生将教材第6页小数乘法的计算方法补充完整。

【设计意图】教材上安排了计算方法的小结,通过本环节的教学有意识地培养学生由具体到抽象的归纳概括能力。

三、引发冲突,突破难点

(一)教学例4

1.出示例题。

(1)师:同学们,我们刚刚总结了小数乘法的计算方法,你能运用小数乘法的计算方法来计算下面这道题吗?

(2)板书(或用PPT课件演示):0.56×0.04=________

2.尝试计算。

1)学生尝试计算,教师巡视,了解学生的计算情况和遇到的问题。

(2)师:在计算时,遇到了什么新问题?

3)师:乘得的积的小数位数不够时,怎样点小数点呢?

(二)及时巩固

1.学生独立完成教材第6页“做一做”的第1题。

(其中既有一般的小数乘法,也有积的小数末尾有0和积的小数位数不够的类型,帮助学生全面掌握小数乘法的计算。

2.学生完成教材第6页“做一做”第2题的计算。


(三)探究积与因数的大小关系

1.集体订正“做一做”第2题时,引导学生分别将每组题中计算的结果和第一个因数比较大小,发现其中的规律。

2.组织学生交流、总结自己发现的规律。

(1)一个数(0除外)乘大于1的数,积比原来的数怎么样?

(2)一个数(0除外)乘小于1的数,积比原来的数怎么样?

3.帮助学生进一步明确积与因数的大小关系,并结合具体例子明确应用这个关系可以判断乘法计算中的一些错误。

【设计意图】“乘得的积的小数数位不够,怎么点小数点?”是小数乘法中的难点,让学生用刚刚总结的小数乘法的计算法则来进行例4的计算,意图就是引发学生的认知冲突,促成学生用已有的知识和经验化解冲突,解决遇到的新问题,从而突破学习难点。引导学生自主探索积和因数之间的大小关系,不仅为确定小数点的位置提供了操作依据,避免在确定积的小数位数时发生错误,而且也有利于培养学生的探究意识和分析归纳能力。

四、实践应用,内化提升

(一)基本练习

1.练习二第1题(基本计算)。

1)学生独立练习。

2)组织学生交流和订正。(其中有第一个因数的位数比第二个因数的位数少、积的小数末尾有0和积的小数位数不够等多种类型同时出现的小数乘法计算,让学生充分地交流和发表意见,教师适时给予指导,帮助学生全面掌握小数乘法的计算方法。)

2. 练习二第2题(基本应用)。

(1)帮助学生理解题意,指导学生看懂每种商品各有多少千克。

2)引导学生回顾单价、数量和总价之间的关系。

3)学生独立完成。

(二)拓展练习

补充题:在下面算式的括号里填上合适的数。(你能想出不同的填法吗?)

0.48=(       )×(       )

=(       )×(       )

【设计意图】通过分层次的练习,旨在让学生通过基本计算全面掌握小数乘法的计算方法,培养学生的运算能力;通过基本应用感受小数乘法在现实生活中的实际应用,培养学生的应用意识;通过拓展练习进一步体会因数与积小数位数之间的关系,培养学生灵活运用小数乘法计算方法的能力。

五、全课总结,畅谈收获

说说这节课你有什么收获?

六、课堂练习

练习二第3、4、5题。


《小数乘法》教学设计(第3课时)


教学内容:人教版小学数学教材五年级上册第7页例5及“做一做”,练习二第6~8题。

教学目标:

1.经历在实际问题中收集和获取信息的过程,会正确利用小数倍解决实际问题,正确计算小数乘法。

2.掌握小数乘法的验算方法,体验解决问题方法的多样性,形成修正错误、严谨求实的科学态度。

3.形成独立思考、反思质疑的学习习惯,体验知识迁移的学习方法。

教学重点:利用小数倍解决实际问题。

教学难点:合理选择小数乘法的验算方法。

教学准备:课件、投影仪、计算器。

教学过程:

一、复习铺垫,激活经验

1.口算下面各题,看谁算得又对又快。(将答案按顺序记录在口算本上,再集体订正。)

3×0.5=      0.7×4=      2.1×3=      1.1×8=

9×0.8=      1.5×2=      0.7×0.8=    2.5×0.4=

2.解答:一支铅笔0.5元,一支水性笔的价钱是一支铅笔的3倍。一支水性笔多少钱?(指名学生回答:为什么用乘法计算?)

3.回顾:前面我们学习了关于小数乘法的哪些知识?

(学生自由回答,教师适时引导,整理回顾小数乘法的计算法则、确定积的小数点位置的方法以及积与因数的大小关系等。)

【设计意图】帮助学生回忆旧知,梳理已有的知识经验,激活学生头脑中与本课相关的已有知识,为探究新知奠定基础。

二、情境导入,自主探索

(一)创设情境,揭示课题

1.呈现教材主题情境图(PPT课件),让学生独立收集信息。

2.交流整理:从这幅图中你知道了哪些数学信息?(教师结合学生的回答,在课件上适时强调、突出相关的数学信息。)

(1)非洲野狗的最高速度是56千米/时;

(2)鸵鸟的最高速度是非洲野狗的1.3倍;

(3)要求的问题是“鸵鸟的最高速度是多少千米/时”。

3.揭示课题:今天我们继续学习小数乘法——利用小数倍解决问题。〔板书课题:小数乘小数(2)〕

(二)自主探究,解决问题

1.你们会解决这个问题吗?

(1)学生独立尝试,在练习本上列式并解答。

(2)教师巡视,收集个案,并指名演板。

2.独立思考,小组交流。(PPT课件出示,给予独立思考的时间。)

(1)为什么用乘法计算?

(2)怎样计算小数乘法56×1.3 ?

(3)你算得对吗?

3.汇报梳理,构建方法。

(1)以前学习的“求一个数的整数倍是多少”,用乘法计算。那么求“一个数的小数倍是多少”也用乘法计算。(板书:求一个数的小数倍用乘法计算。)

(2)在计算小数乘法时,先按整数乘法算出积,再点小数点;点小数点时,看因数中一共有几位小数,就从积的最右边起数出几位,点上小数点。

(3)集体交流、核对。

【设计意图】在情境中启发学生思考,通过旧知迁移领悟用小数表示两个数量之间的倍数关系。激发学生自主参与小数乘法的计算兴趣,在汇报交流中理解为什么要用乘法计算,进一步熟悉小数乘法的计算方法,充分提升学生自主学习的能力。

(三)回顾检验,适当修正

1.出示教材中小朋友的计算过程(PPT课件)。(师:同学们,计算后我们往往需要检查计算结果是否正确。瞧!)

2.请你帮这位小女孩验算一下,她算得对吗?(独立完成。)

3.交流汇报,明确方法。(教师巡视。)

(1)把因数的位置交换一下,乘一遍,看对不对。(PPT课件呈现验算过程。)

(2)用计算器来验算。(投影演示。)

(3)根据积与因数的大小关系来验算。由于56乘1.3的积应该比56大,而7.28比56小,所以7.28肯定是计算错了。

4.检查过程,修正错误。

(1)师:同学们,在计算时我们往往先入为主,如果再算一遍,不一定能检查出计算中的错误,所以我们可以从刚才同学们使用的各种验算方法中选择适当的方法进行检查。

(2)师:在解决问题时,我们除了要检查计算是否正确以外,还要检查横式的得数写了没有,写对了没有?得数的单位名称是否正确?同学们,再检查一下,除了计算还有没有其他的问题,相互督促改正。

5.随堂巩固。(第7页“做一做”。)

(1)独立完成。

(2)集体订正。针对课堂中生成的问题,有目的地投影展示,学生评价与小结。

【设计意图】利用教材中小女孩的计算错误,激活学生对整数乘法验算方法的回忆。为感受验算方法的多种策略,先放手让学生自己验算,再组织学生交流汇报。具体验算时,不要求学生一定按某种方法验算,只要能选择有效的方法对计算结果做出判断即可,注重提高学生的思维能力和计算能力,让学生形成修正错误、严谨求实的科学态度。

三、巩固练习,拓展延伸

(一)基本练习

1.练习二第6题(第二排的3道小题)。

(1)先计算,再验算。

(2)展示汇报,集体订正。

(3)订正时注意0.072×0.15的计算过程与验算方法。(按照整数乘法算出72乘15的积是1080,由于两个因数中一共有五位小数,而积的小数位数只有四位,先要在前面补一个“0”,再点上小数点,最后将积的小数末尾的“0”去掉,得0.0108。)

2.练习二第8题的第一问:这只长颈鹿高多少米?

(1)认真审题,明确问题。(明确第一问要解答的问题。)

(2)独立思考,解决问题。

(3)交流汇报,集体订正。(强调用小数倍直观地表示两个数量之间的关系。)

(二)提高练习

练习二第8题的第二问:梅花鹿比长颈鹿矮多少米?

(1)独立思考,自主解题。

(2)思考:如果直接求“梅花鹿比长颈鹿矮多少米”,你还能用别的方法解答吗?

【设计意图】通过不同层次的练习,促使学生不断巩固小数乘法的计算方法,提高利用小数倍解决问题的能力,丰富学生解决问题的策略,培养学生的应用意识。

四、课堂总结,梳理知识

(一)回顾

1.今天这节课我们学习了哪些知识?

2.你是用以前学习的哪些知识来解决今天遇到的新问题?

(二)梳理

1.继续学习了小数乘法计算。

2.用小数倍表示两个数量之间的关系,并用小数倍解决问题,用小数倍解决问题与以前学过的用整数倍解决问题的方法是一样的。

3.计算后一定要验算,针对不同的计算类型可以灵活地选择合适的验算方法,发现错误要及时改正。

【设计意图】通过课堂总结与梳理,让学生明确本节课的学习目标是否达成,养成及时梳理知识、总结学习方法的良好习惯,提升学生的认知水平。

五、课堂练习

1.练习二第6题(第一排)。

2.练习二第7题。


《小数乘法》教学设计(第4课时)


教学内容:人教版小学数学教材五年级上册第11页例6及“做一做”,练习三第1~3题。

教学目标:

1.使学生在比较熟练地掌握了小数乘法计算方法的基础上,能根据实际需要和题目要求正确地用“四舍五入”法求积的近似数。

2.培养学生灵活、合理地运用求积的近似数的方法解决实际问题的意识和能力。

3.使学生进一步体会数学知识之间、数学知识与现实生活之间的联系,提高学习数学的信心和兴趣。

教学重点:正确地用“四舍五入”法求积是小数时的近似数。

教学难点:初步理解求积的近似数往往是“实际应用”的需要。

教学过程:

一、以旧引新,激活经验

1.计算下面各题。

1.5×24      0.37×2.6      4.02×8.3

(1)学生独立完成,指名演板,集体订正。

(2)说一说小数乘法应该怎样进行计算?

2.求下面各小数的近似数。

保留一位小数:3.12;5.549;0.3814。

保留两位小数:4.036;7.7963;8.42378。

(1)独立完成,集体反馈。

(2)7.7963的近似数为什么是7.80?

(3)我们刚才是用什么方法来求小数的近似数的?用这种方法求小数的近似数应该注意什么?

【设计意图】由于本课学习内容涉及小数乘法计算和用“四舍五入”法求近似数的应用,而学生对“四舍五入”法已经有较长时间没有接触了,所以通过简单复习,帮助学生唤起对已学知识,特别是对“四舍五入”法的记忆,为后续学习做好知识准备。

二、创设情境,自主探究

(一)谈话导入,揭示课题

1.谈话导入:在实际应用中,小数乘法的积往往不需要保留很多的小数位数,这时可以根据需要,按“四舍五入”法保留一定的小数位数,求出积的近似数。(PPT课件呈现谈话内容。)

2.揭示课题:积的近似数。(板书课题:积的近似数)

(二)了解信息,解决问题

1.出示情境图(PPT课件)。

小狗正在做什么?人们训练小狗缉毒是利用了小狗的什么特点?小狗嗅觉灵敏与嗅觉细胞的数量多少有很大关系,下面请看一个与之相关的实际问题。

2.出示例6(PPT课件)。

(1)题目中有哪些数学信息?提出了什么问题?

(2)你会解答这个问题吗?怎样解答?

(3)题目中对解答这个问题有什么特殊要求?

(4)这里的“得数保留一位小数”表示要求出积的近似数,那么条件中的“0.049亿”是近似数还是准确数呢?为什么不用准确数?

3.学生独立尝试,指名两名学生演板。

4.组织学生观察、评价黑板上两名演板同学的解答过程。

5.组织学生交流、反馈自己的解答过程。(教师适时演示PPT课件。)

(1)你是怎样解决这个问题的?

(2)解决这个问题时需要注意什么?

(3)你是怎样将“得数保留一位小数”的?

(4)写横式的得数时要注意什么?

【设计意图】本环节的教学除了通过例题中对得数的要求来揭示求“积的近似数”的教学内容外,还有意识地引导学生判断已知条件中“0.049亿”是近似数还是准确数?为什么不用准确数?进一步让学生体会在实际应用中有时准确数既无必要又不可能,而用近似数就可以了。至于例题的具体解答过程,难度并不大,放手让学生自己去解决,教师只是在重点处有针对性地引导学生交流、反馈,突出用“四舍五入”法求积的近似数的方法和过程,强调书写时应注意的细节。

三、巩固练习,强化认知

(一)求“积的近似数”的基本练习

1.第11页“做一做”第1题。

(1)出示题目(PPT课件)。

1.计算下面各题。

0.8×0.9  (得数保留一位小数)

1.7×0.45 (得数保留两位小数)

(2)全班齐练,指名两人演板。

(3)集体订正。

2.补充题。

(1)出示题目(PPT课件)。

补充题:

将“1.35×0.96”的积用“四舍五入”法保留两位

小数,所得的近似数是(    )。

A.1.29       B.1.30       C.0.13

(2)学生独立思考,用自己的方法进行判断和选择。

(3)组织学生集体交流自己是怎样做出判断和选择的。(教师强调:用“四舍五入”法按要求保留小数位数时,所求得近似数末尾的“0”必须保留,不能随意去掉。)

(二)求“积的近似数”的实际应用

1.第11页“做一做”第2题。

(1)出示问题(PPT课件):一种大米的价格是每千克3.85元,买2.5 kg应付多少钱?

(2)全班齐练,教师巡视。(选择两名同学演板,一人的得数是准确数,一人的得数是近似数。)

(3)集体订正,追问质疑。

质疑一(对得数是准确数的同学):这节课学习的是求“积的近似数”,你为什么用准确数表示求得的积?

质疑二(对得数是近似数的同学):这一题的问题没有保留几位小数的要求,你为什么用近似数表示求得的积?

2.集体讨论。

(1)再遇到这样的实际问题,我们应该怎样处理?

(2)通过这道题的解答,你感受到了什么?(在实际应用中,应该根据需要按“四舍五入”法保留一定的小数位数,求出积的近似数。)

【设计意图】用“做一做”的第1题和补充的选择题来巩固求积的近似数的方法。而在“做一做”的第2题中,不同的学生可能会有不同的处理方式,如:有的求的是积的准确值,有的求的是积的近似数,甚至求出的近似数也可能不完全相同,可能保留的是两位小数,也可能保留的是一位小数,还有“舍”与“入”的问题。教师应充分利用这些生成的教学资源,及时进行评价,引导学生在比较和争论中积极思考,让这些丰富的资源引发出精彩、自然的认知冲突,让学生从实际例子中体会求积的近似数往往是“实际应用”的需要。

四、全课总结,畅谈收获

谈谈这节课你有哪些收获?

五、作业练习

1.课堂作业:练习三第1题第(2)小题、第3题。

2.家庭作业:练习三第1题第(1)小题、第2题。


《小数乘法》教学设计(第5课时)


教学内容:人教版小学数学教材五年级上册第12页教学内容、例7及“做一做”,练习三第4~6题。

教学目标:

1.使学生理解整数乘法运算定律对于小数乘法同样适用,并能应用这些运算定律进行有关小数乘法的简便计算,进一步发展学生的数感。

2.培养学生的观察能力、类推能力和灵活运用所学知识解决问题的能力。

3.在学习活动中,感受数学知识之间的内在联系,培养科学的思维方式。

教学重点:理解整数乘法运算定律对于小数乘法也适用。

教学难点:能根据数据特点,应用乘法运算定律进行小数乘法的简便计算。

教学准备:PPT教学课件。

教学过程:

一、以旧引新,铺垫迁移

1.不计算,直接把上、下两排得数相等的算式用线连起来。

    7×12           8×(5×4)      (24+36)×5

(8×5)×4       24×5+36×5          12×7

(1)指名学生口答。

(2)说明连线理由。

2.指名学生说一说在整数乘法中学过了哪些运算定律?

(1)学生用自己的语言描述三个乘法运算定律,并用字母表示。

(2)教师根据学生回答适时演示课件。

乘法交换律:a×bb×a

乘法结合律:a×b)×ca×(b×c

乘法分配律:ab)×ca×cb×c

3.师:我们知道应用乘法运算定律可以使一些整数乘法计算变得更为简便,那么在小数乘法计算中是否也能应用这些运算定律?今天这节课我们就来研究这个问题。

【设计意图】通过相等算式连线和用字母表示乘法运算定律,复习巩固所学的知识,为新知的学习做好铺垫。顺势联想,以旧引新,不仅激发学生的探究欲望,更让学生有目标地去思考,为方法的迁移奠定必要的基础。

二、猜测验证,发现规律

(一)引导观察,提出猜测

1.出示教材第12页的教学内容(PPT课件演示)。

2.明确小数四则混合运算的顺序。

(1)师:这里有三组算式,有的是小数乘法计算,有的是小数四则混合运算。那么,你知道小数四则混合运算的顺序是怎样的吗?你是怎么知道的?

(2)师:你能说一说第二组中两个算式的运算顺序吗?第三组的两个算式呢?

3.引导学生观察算式,提出猜测。

(1)师:仔细观察这三组算式,你发现它们有什么特点?

(2)师:根据算式的特点,你能猜一猜每组的两个算式之间有什么关系吗?(由于是猜测,学生的答案可能会不一样。)

(二)明确计算,验证猜测

1.教师引导

(1)师:同学们都仔细观察了每组中的两个算式,也都提出了自己的猜测。那么,你的猜测对吗?怎样验证你的猜测对不对呢?(引导学生提出可以用实际计算进行验证。)

(2)师:我们刚才已经知道小数四则混合运算的顺序跟整数是一样的,下面就请同学们实际计算一下,看看你的猜测对不对?看看每组中的两个算式相不相等?

2.学生通过实际计算进行验证。

3.学生交流验证结果。

(三)举例验证,概括规律

1.教师引导

(1)师:通过同学们的实际计算,我们发现这三组算式中每组的两个算式都是相等的,这说明什么呢?(整数乘法的交换律、结合律和分配律对于小数乘法也适用。)

(2)师:对于乘法交换律、结合律和分配律,我们刚才都是只用了一个小数乘法的例子进行验证,那能不能就说明整数乘法的运算定律对于小数乘法一定适用呢?(还需要用更多的举例来进行验证。)

2.指导学生任意举例,进一步加以验证。

(1)师:对,我们还应该举更多的小数乘法的例子来加以验证。那么,你想进一步验证哪条运算定律呢?请同学们参照上面的算式任意举例,看整数乘法的运算定律对于小数乘法是不是适用?

(2)师:谁来说一说你举了一个什么例子?(注意指导举例算式的结构。)

(3)师:这个例子说明了什么?(注意理解算式和运算定律之间的关系。)

3.引导学生概括规律,揭示课题。

(1)师:请同学们在小组里相互交流交流,通过这些例子你发现了什么?(乘法运算定律中的数既可以是整数,也可以是小数。)

(2)师:通过我们对这些算式的观察猜测、计算验证和同学们自己的举例说明,现在谁能说一说你发现了什么规律?(整数乘法的交换律、结合律和分配律对于小数乘法也适用。)

(3)揭示课题。(板书:整数乘法运算定律推广到小数)

【设计意图】本环节是本节课的教学重点。为了让学生理解整数乘法的运算定律可以推广到小数,理解整数乘法的运算定律对于小数乘法同样适用,本环节教学分为三个层次逐步展开,首先让学生对教材提供的三组小数四则运算的算式进行观察和猜测,在头脑中初步感知每组中两个算式之间的关系;然后通过实际计算进行验证,进一步理解每组中两个算式之间的关系;最后通过自己举例验证,发现规律,得出结论。在本环节教学中,教师不是把规律强加给学生,而是在关键处引导点拨,让学生自己去猜测、验证和发现。

三、迁移类推,应用规律

(一)谈话导入

我们已经把整数乘法的运算定律推广到了小数。应用乘法的运算定律可以使一些整数乘法的计算简便,也可以使一些小数乘法的计算简便。

(二)教学例7

1.出示例题。

0.25×4.78×4            0.65×202

2.引导学生审题,明确算式结构和数据特点,确定计算方法。

3.学生在练习本上自主尝试计算。(教师巡视,个别指导,指名学生板演。)

4.组织学生在小组里交流自己的简便计算方法,感受运算定律的作用。

5.组织学生全班集体交流,并适时板书计算过程。

(1)怎样使计算简便?

(2)应用了哪条运算定律?

6.组织学生针对演板和自己的尝试计算进行交流和评价。

【设计意图】应用所学的知识解决问题,这是发展学生数学能力、培养学生应用意识的重要途径。通过让学生自己尝试将整数乘法的运算定律应用到小数乘法进行简便计算,激发了学生运用新知识解决新问题的欲望,并使学生体验到成功的快乐!

四、及时练习,巩固应用

(一)基本练习

1.第12页“做一做”第1题。

(1)学生独立练习,教师巡视。

(2)全班集体订正,着重交流各小题分别是根据哪条运算定律进行填空的。

2.第12页“做一做”第2题。

(1)学生独立练习,教师巡视,了解学生对应用运算定律进行简便计算的掌握情况。

(2)全班集体订正,着重交流简便计算的思维顺序,明确要根据数据的特点应用乘法运算定律,才可以使计算变得简便。

(二)实际应用

练习三第5题。

(1)学生读题理解题意,独立解答。

(2)小组交流,引导学生感受小数四则混合运算在实际生活中的应用。

【设计意图】通过“做一做”两道题的分层练习,既使学生更加熟悉乘法运算定律的算式结构,又使学生在实际计算中将整数乘法的运算定律迁移、类推到小数乘法中;在集体订正和全班交流中重视培养学生思维的逻辑性,根据数据的特点怎样算比较简便?第一步应该怎样做?应用哪条运算定律?并且通过解决实际问题,既使学生体会到小数四则混合运算在现实生活中的应用,又培养了学生解决问题的能力,拓宽了学生的思维空间。

五、回顾梳理,总结升华

1.提问:这节课你都获得了哪些知识? 在本节课中你最大的收获是什么?

2.教师归纳整理。

【设计意图】让学生对本节课有一个简单的回顾整理,教师可以根据学生的回答加以适当的补充和归纳。另外,从交流中了解学生学习的具体情况,以便加强对某些学生的个别辅导。

六、作业练习

1.课堂作业:练习三第4题。

2.家庭作业:练习三第6题。


《小数乘法》教学设计(第6课时)


教学内容:人教版小学数学教材五年级上册第15页例8,练习四第1~5题。

教学目标:

1.经历实际问题的解决过程,能正确运用小数乘法估算解决简单的实际问题,进一步熟悉解决问题的基本步骤。

2.在解决问题的过程中,学会用表格的形式表示和整理信息,能根据实际问题和具体数据选择适当的估算策略,进一步发展学生的数感。

3.在解决问题的过程中,使学生获得用估算解决问题的活动经验,感受数学在实际生活中的应用价值,体验解决问题的乐趣。

教学重点:正确运用估算解决简单的实际问题。

教学难点:根据实际问题和数据选择适当的估算策略。

教学准备:将例题与相关习题制成PPT课件。

教学过程:

一、复习铺垫,谈话引入

(一)复习铺垫

1.用简便方法计算下面各题。

3.14×12.5×0.08      5.28×99+5.28

(1)学生独立完成。

(2)集体订正,说一说:你是怎样计算的?应用了什么运算定律?

2.在方框里填上合适的整数。

3.8×3<□    1.78×3.98<□    2.5×4.12>□    6.1×3.08>□

(1)学生独立完成。

(2)师生交流:在方框里填的数是多少?你是怎样思考的?

(3)小结:像这样的问题,我们可以先将式子中的因数“放大”或“缩小”成近似的整数,再来思考会简单一些。

(二)揭示课题

1.谈话引入:前面我们已经学习了小数乘法的计算,这节课我们就一起学习用小数乘法的有关知识解决问题。

2.板书课题:解决问题(1)

【设计意图】由于本课是紧随“整数乘法运算定律推广到小数”后进行教学的,在新课伊始安排了两个“复习铺垫”内容。一是帮助学生及时巩固应用乘法的运算定律进行小数乘法的简便计算,二是帮助学生复习回顾小数乘法的估算方法,为运用小数乘法的估算解决实际问题做适当的知识铺垫,为更好地进行后续学习奠定知识和经验的基础。

二、解决问题,形成经验

(一)阅读与理解

1.出示例题,呈现问题情境(PPT课件演示)。

2.理解题意,叙述题目内容。

(1)用自己的话说一说题目的意思是什么?

(2)引导学生根据图文叙事:妈妈去超市购物,买了2袋大米和一块肉,还想买一盒鸡蛋,看看剩下的钱够不够。

3.收集信息,明确问题。

(1)提问:从题目中你获得了哪些数学信息?

(2)学生汇报交流。

(3)教师结合学生的回答,在课件上适时强调、突出相关的数学信息。(条件:①妈妈有100元钱;②每袋大米30.6元,买了2袋;③肉每千克26.5元,买了0.8千克。问题:剩下的钱还够买一盒10元的鸡蛋吗?够买一盒20元的吗?)

4.引导学生用表格的形式表示和整理信息。

(1)题中有这么多的信息,这里的“30.6元”“26.5元”“10元”“20元”都是单价,这里的“2袋”“0.8千克”都是数量。用什么样的形式来表示、整理这些信息可以更容易让我们看清楚这些单价、数量之间的关系呢?(让学生充分发表自己的意见。)

(2)教师归纳:当信息较多时,我们就需要对信息进行适当的整理,并且用表格的形式表示出来,这样就比较容易发现各种信息之间的关系。在这个问题里,我们就需要将各种信息按不同物品的单价、数量和总价分别进行整理,并用表格的形式表示出来,这样就很容易看清楚各种物品的单价、数量和总价之间的数量关系。(教师用PPT课件出示表格。)

(3)学生用表格表示和整理各种信息。


单价

数量

总价

大米







鸡蛋




(4)学生交流、汇报表格里填写的各种信息。(教师注意引导学生有序回答表格中的信息,并适时用PPT课件演示。)

【设计意图】本课作为解决问题的教学,在教学中,关注学生自觉地按照解决问题的思维步骤分析问题、解决问题,形成解决问题的良好习惯。与此同时,由于本节课所探究问题信息量较多,在“阅读与理解”环节关注学生对数学信息的收集和处理的能力──用表格的形式来表达和整理数学信息。

(二)分析与解答

1.分析数量关系,明确解决问题的思路。

(1)刚才,同学们用表格的形式表示、整理了题目中的各种信息,从表格中你发现了哪些数量关系?(教师演示PPT课件。)

(2)要解决“剩下的钱够不够买一盒10元或者20元的鸡蛋”这个问题,你是怎样想的呢?(学生先独立思考,再同桌相互交流。)

(3)组织学生集体交流解决问题的思路。

思路一:先算出买大米和肉这两件物品的总价,再算出剩下的钱数,然后将剩下的钱数分别与10元和20元相比较,看超不超过10元或者20元。

思路二:先算出买大米、肉和鸡蛋这三件物品的总价,再将这个总价与100元相比较,如果超过100元就不够买,不超过100元就够买。

2.独立思考,以“问题引导”的方式自主解决问题。

(1)明确自主活动要求。(教师用PPT课件出示。)

(2)学生根据“自主活动要求”,尝试解决问题。

3.集体汇报,交流解决问题的不同方法。(教师适时用PPT课件演示解答过程。)

(1)预设一。

生:我是先算出买2袋大米和0.8 kg肉这两件物品的总价,算式是30.6×2+26.5×0.8=82.4(元);再算出剩下的钱100-82.4=17.6(元);因为17.6元比10元多,但比20元少,所以剩下的钱够买一盒10元的鸡蛋,但不够买一盒20元的鸡蛋。

引导评价:你们认为这种方法怎么样?还有不同的方法吗?

生:这种方法解决问题的思路很清楚,但是计算比较麻烦。在购物时,我们很少会进行精确的计算,只需要估算一下就可以了。

(2)预设二。

生:我是用估算解决的。1袋米不到31元,2袋米就不到62元;肉不到27元。如果买一盒10元的鸡蛋, 总共不超过62+27+10=99(元)。所以,够买一盒10元的鸡蛋。我是这样表示的:

大米:<31元

大米:<31元

肉:<27元

鸡蛋:10元

总价不超过:31+31+27+10=99(元)

教师追问:这种方法一定能判断出剩下的钱够买一盒10元的鸡蛋吗?

师生交流:这种方法是将大米和肉的价钱都适当地估大,估大以后所有物品的总价不超过99元,所以剩下的钱一定够买一盒10元的鸡蛋。

(3)预设三。

生:我也是用估算解决的。1袋米超过30元,2袋米就超过60元;1 kg肉超过25元,0.8 kg肉就超过25×0.8=20(元);如果买一盒20元的鸡蛋,总共就超过60+20+20=100(元)。所以,不够买一盒20元的鸡蛋。我是这样表示的:

大米:>30元

大米:>30元

肉:>20元

鸡蛋:20元

总价就超过:30+30+20+20=100(元)

教师追问:这种方法一定能判断出剩下的钱不够买一盒20元的鸡蛋吗?

师生交流:这种方法是将大米和肉的价钱都适当地估小,估小以后所有物品的总价超过100元,所以剩下的钱肯定不够买一盒20元的鸡蛋。

【设计意图】由于学生在“阅读与理解”环节对问题有了较深入的理解,因此本环节采用“问题引导”的方式引导学生自主探索、解决问题。主要关注学生以下两个方面的认识:其一,这样的实际问题采用什么样的方法解决比较简便?显然,在不需要知道准确计算结果的时候,采用估算的方法解决问题比较简便,这是估算的价值所在。其二,题目中的数据怎样估比较合适?怎样利用估算的结果进行判断?这是两个有紧密联系的问题,是估算的核心,也是学生应用估算解决问题的难点。因此,在教学预设中,运用“追问”“质疑”的方式引导学生对具体数据的大小范围进行判断,加深理解。

(三)回顾与反思

1.理一理、议一议。(教师用PPT课件出示问题。)

(1)我们刚才是怎样解决这个问题的?(第一问是通过把物品的钱数估大,发现估大后的总钱数不超过100元,判断出“够买”;第二问是通过把物品的钱数估小,发现估小后的总钱数已超过100元,判断出“不够买”。)

(2)我们刚才解决的这个问题有什么特点?(只需要判断出钱数够不够,不需要进行准确计算。)

(3)解决这样的问题,你觉得用什么方法解答更简便?(可以用估算解答,用估算解答更简便。)

2.想一想、说一说。

(1)我们刚才用了两种不同的估算方法解决问题,这两种估算方法有什么不同?(教师用PPT课件出示。)

(2)师生交流:第一种方法是将物品的钱数估大,这样得出的总钱数比实际总价高,也就是说实际总价不超过这样得出的总钱数;第二种方法是将物品的钱数估小,这样得出的总钱数比实际总价低,也就是说实际总价一定超过这样得出的总钱数。

(3)教师归纳:通过这两种估算方法的对比,我们发现用估算解决实际问题时,要根据问题的具体情况和数据特点选择适当的估算策略。要判断“够”的话,所有的数据都要估大或不变;要判断“不够”的话,所有的数据都要估小或不变。估的时候还要注意估大或估小要适度,要能解决问题。(教师适时用PPT课件归纳。)

【设计意图】在本环节,通过“理一理、议一议”和“想一想、说一说”,引导学生回顾用估算解决问题的过程,反思两种不同的估算方法,使学生明确要根据实际问题和数据特点选择适当的估算策略,进一步体会估算的实际应用。

三、巩固练习,内化提升

(一)基本应用

1.练习四第2题。

(1)学生独立完成。

(2)同桌互相说一说自己是怎样算的。

(3)全班集体交流:这个问题你是怎样算的?(可以用笔算或用计算器解决,鼓励用估算解决,培养用估算解决问题的应用意识和选择用简便方法解决问题的灵活性。)

2.例题的改编题。

妈妈带95元去超市购物。她买了2袋大米,每袋30.6元。还买了0.8 kg肉,每千克26.5元。剩下的钱还够买一盒10元的鸡蛋吗?

(1)引导审题:与例题相比,这道题哪个数据有变化?

(2)学生独立完成,教师巡视,了解学生能否运用经验解决此类问题。

(3)全班交流:你是怎样用估算解决这个问题的?

(二)变式应用

1.练习四第3题。

(1)理解题意:解决“100块够吗”这个问题,就是要比较哪两个面积的大小?(房间面积和100块地砖的面积。)

(2)学生独立完成。

(3)全班集体交流:怎样比较房间面积和100块地砖面积的大小?

2.练习四第4题。(本题是变式应用,给予学生必要的指导,再留作课堂作业。)

(1)引导审题:这题的两问之间有什么关系?

(2)全班交流:解决“用0.8小时能到学校吗”这个问题,就是要比较什么与什么的大小?

四、全课总结,分享经验

1.我们今天这节课学习的是什么内容?你有哪些收获?

2.用估算解决问题,要根据实际问题和数据特点选择适当的估算方法。那么,你在选择估算方法上有什么体会?

五、作业练习

(一)课堂作业

1.练习四第1题(第二行)。

2.练习四第4题。

(二)课外作业

1.练习四第1题(第一行)。

2.练习四第5题。

华中科技大学附属小学 冯 胜(初稿)
湖北省武汉市东湖新技术开发区教研室 李文华(修改)
湖北省武汉市教育科学研究院 马青山(统稿)



《小数乘法》教学设计(第7课时)



教学内容:人教版小学数学教材五年级上册第16页例9,练习四第6~9题。

教学目标:

1.经历分段计费问题的解决过程,自主探究分段计费问题的数量关系,能运用分段计算的方法正确解答这类实际问题,进一步提升解决问题的能力。

2.在解决问题的过程中,学会用摘录的方法收集和整理信息,能从不同的角度分析和解决问题。

3.通过回顾与反思,积累解决问题的活动经验,初步体会函数思想。

教学重点:运用分段计算的方法正确解答分段计费的实际问题。

教学难点:探究分段计费问题的数量关系,初步体会函数思想。

教学准备:将例题与相关习题制成PPT课件。

教学过程:

一、联系生活,提出问题

1. 同学们,你们都乘坐过出租车吧!你知道出租车是怎样收费的吗?(PPT课件演示。)

2. 出租车的收费标准是采用分段计费的,今天这节课我们就一起来探究、解决分段计费的实际问题。

3. 板书课题:解决问题(2)。

【设计意图】引导学生从自己熟悉的日常生活中发现、提炼具体的数学问题,使学生感受到数学与现实生活的密切联系,体会到数学广泛应用于我们日常生活的方方面面。

二、引导探究,解决问题

(一)阅读与理解

1. 呈现情境,明确问题。

(1)出示例9的问题情境。(PPT课件演示,暂不出示收费标准。)

(2)提问:这一情境中要我们解决的问题是什么?解决这个问题还需要知道什么信息?(出租车的收费标准。)

(3)出示收费标准(PPT课件演示)。

2. 读懂图文,摘录信息。(教师逐步板书或PPT课件适时演示。)

(1)收费标准:

km以内: 7元;

超过3 km: 每千米1.5元(不足1 km按1 km计算)。

(2)行驶里程:6.3 km

3. 集体交流,理解标准。(PPT课件突出显示。)

(1)“3 km以内7元”是什么意思?(出租车从起步到行驶3 km里程,应付的车费都是7元。)

(2)你为什么认为“3 km以内7元”包括3 km呢?(因为“超过”3 km,每千米就要按1.5元收费。)

(3)超过3 km后就要按每千米1.5元的标准收费,并且不足1 km按1 km计算。这里“不足1 km按1 km计算”又是什么意思呢?你能举例说明吗?

(4)问题中行驶里程是6.3 km,根据收费标准,应按多少千米收费呢?(用“进一法”取整数,按7 km收费。)

4. 教师归纳,概括要点。(PPT课件演示。)

(1)问题中的收费标准是分两段计费的,3 km以内是一个收费标准,为一段;超过3 km又是一个收费标准,又为一段。

(2)超过3 km部分,不足1 km要按1 km计算,也就是要用“进一法”取整千米数。

【设计意图】解决分段计费问题的关键是理解题意,尤其是理解计费标准。为了帮助学生理解问题中的收费标准,教师采用条件摘录的方式收集信息,引导学生逐条逐句地解释含义,并结合具体数据(学生的举例的和题中的6.3 km)帮助学生切实理解,在此基础上教师再对收费标准的两个要点进行明确的归纳和概括,既促使学生养成认真审题的良好学习习惯,又有效地突破了分段计费问题的教学关键和难点。

(二)分析与解答

1. 启发学生用自己的方法尝试解答。

(1)教师启发引导:我们已经理解了题意,也理解了这个问题中的收费标准是分两段计费的,那么同学们能不能尝试用自己的方法进行解答?

(2)学生尝试解答。

预设一:7+1.5×4=7+6=13(元);

预设二:1.5×7=10.5(元),7-1.5×3=2.5(元),10.5+2.5=13(元)。

2. 组织、引导学生讨论、交流不同的解答方法。(PPT课件适时演示解答过程。)

(1)预设一(分段计算):

生:我是分两段计算的,前面3 km为一段,应付车费7元;后面4 km为一段,每千米1.5元,应付车费是1.5×4=6(元);再把两段应付的车费合起来就是13元。

师(质疑):后面一段里程为什么是4 km,计算后面一段车费为什么用“1.5×4”?

生:根据收费标准,6.3 km按7 km计算,前面一段是3 km,后面一段就是4 km,所以计算后面一段的车费就应该用“1.5×4”。

(2)预设二(先假设再调整):

生:我是用“先假设再调整”的方法解答的,先假设总里程7 km都按每千米1.5元计算,结果是10.5元;而这样前面3 km的费用少算了7-1.5×3=2.5(元);再来调整,用10.5元加上少算的2.5元,所以应付车费13元。

【学情预设根据学生已有的知识和经验,大多数学生容易想到用第一种解答方法解答。但第二种解答方法学生不容易想到,因此,在组织学生讨论、交流时,教师可以根据学生的具体情况进行引导。如:如果把前面一段3 km也按每千米1.5元收费,车费是少算了还是多算了?

3. 引导学生积累解决分段计费实际问题的经验。

(1)变换例题条件:如果行驶里程是8.4 km,你还能用刚才的方法计算出车费吗?如果行驶里程是9.8 km呢?(PPT课件演示。)

(2)学生自主解答,教师巡视。

(3)集体交流订正。(教师板书或PPT课件呈现解答过程。)

【设计意图】沿用例题情境,变换问题条件,让学生在熟悉的情境中解决变换后的问题,不仅有利于学生进一步体会解决分段计费问题的思路和方法,也有利于学生在对比中发现解决分段计费问题的规律,积累解决实际问题的经验,促进学生观察分析、归纳概括能力的发展。

(三)回顾与反思

1. 回顾。

(1)我们刚才解决的实际问题都具有什么特点?

(2)这些问题我们是怎样解决的?

2. 反思用“分段计算”解决分段计费问题的过程与方法。

(1)呈现例题及变式题的解答过程。(PPT课件呈现。)

(2)提问:观察、比较上面的解答过程,你发现了什么规律?

(3)揭示规律(PPT课件演示):应付车费=7+1.5×(总里程-3)。

(4)质疑:为什么总是用7元去加后段里程的车费?(引导学生说出:根据收费标准,前段里程3 km的车费7元是固定不变的。所以,只需要计算出后段里程的车费,再和7元相加,就求出了应付的车费。)

3. 反思用“先假设再调整”方法解决分段计费问题的过程与方法。

(1)呈现例题及变式题的解答过程。(PPT课件呈现。)

(2)提问:观察、比较上面的解答过程,你发现了什么规律?

(3)揭示规律(PPT课件演示):应付车费=1.5×总里程+2.5。

(4)质疑:为什么总是用假设车费再加上2.5元?(引导学生说出:如果把所有里程都假设为每千米1.5元,那么前段里程3 km的车费就只算了4.5元,少算了2.5元。所以,算出假设车费后,再加上2.5元才是应付的车费。)

4. 教师归纳。

(1)通过同学们刚才的讨论和交流,我们发现了解决分段计费问题的规律,找到了解决分段计费问题的两种一般方法。(PPT课件演示。)

(2)在解决问题时,我们都应该像这样对解答的过程与方法进行回顾与反思,从中发现所蕴含的规律,找到解决问题的一般方法,提高我们解决问题的能力。

5. 拓展(制作、应用出租车价格表)。

(1)这节课,我们用两种方法解决了乘出租车付费的实际问题。其实,我们还可以用制作价格表的方法来解决乘出租车付费的问题。

(2)你能完成下面的出租车价格表吗? (PPT课件出示价格表。)

(3)学生完成出租车价格表。(教材第16页。)

行驶的里程/km

1

2

3

4

5

6

7

8

9

10

出租车费/元











(4)思考:观察表中的数据,你发现行驶里程与出租车费之间有什么关系?它们之间的变化情况又是怎样的?(PPT课件呈现。)

(5)应用出租车价格表解决问题。(PPT课件呈现。)

①妈妈坐出租车行驶了7.2 km,应付车费多少钱?

②王叔叔乘坐出租车,下车后付了16元车费,他至少乘坐了多少千米?至多呢?

【设计意图】通过“回顾与反思”,引导学生分别反思用“分段计算”和“先假设再调整”的方法解决分段计费问题的过程,帮助学生建立解决这类问题的两种一般方法。通过引导学生完成出租车价格表,并观察、思考表中行驶里程与出租车费之间的关系及变化情况,感受分段计费的特点和规律,让学生初步体会函数思想。

三、实践应用,内化提升

(一)基本应用

练习四第7题。

(1)理解题意:你怎样理解“合影价格表”中的信息?问题“一共需付多少钱”是分哪两段计费?

(2)学生独立完成。

(3)全班集体交流:你是怎样解决这个问题的?

(二)拓展应用

1. 练习四第8题。



(1)理解题意:这道题是实际生活中的一个什么问题?它的收费标准是怎样的?

(2)学生独立完成。

(3)全班集体交流:通话时间8分29秒应该按几分钟计算?你是怎样解答的?

2. 练习四第9题。

(1)理解题意:这道题里有几种收费标准?解答这道题除了考虑分段计费外,还要区分什么?

(2)学生独立完成。

(3)全班集体交流:你是怎样解答第(1)问的?第(2)问呢?

(4)你还能提出其他数学问题并解答吗?

【设计意图】直接选用教材提供的练习,让学生充分感受分段计费问题在实际生活中的广泛应用。练习根据问题的复杂程度分了“基本应用”和“拓展应用”两个层次,在练习中特别注意引导学生理解题意,理解问题中的计费标准,这既是解决这类问题的基础,又是解决这类问题的关键。解答时放手让学生自己独立完成,并通过交流让学生体会解决问题的多种方法,增强学生分析问题、解决问题的能力。

四、全课总结,畅谈收获

1. 说一说,这节课的学习你有什么收获?

2. 本节课是本单元的最后一节课,本单元的学习你有什么收获?

五、作业练习

1. 课堂作业:练习四第6题。

2. 家庭作业。

(1)回顾本单元的学习内容,你有哪些收获?

(2)学习中遇到了哪些问题?你是怎样解决的?

湖北省武汉市光谷第四小学 湛楚雷(初稿)
湖北省武汉市东湖新技术开发区教研室 李文华(修改)
湖北省武汉市教育科学研究院 马青山(统稿)


 

四、部级优课



 还是不懂怎么教吗?看看部级优课的课堂实录

 

课堂实录  怎么看 一步

 

第一步
    

点击阅读原文 

第二步
  

点击课文标题

第三步

点击课堂实录

     

  亲!点击文末的阅读原文,看看国家教育资源公共服务平台的部级优课。(可惜的是,微信不让插入国家教育资源公共服务平台的链接,只能从备课吧123ppt网站过渡一下,辛苦啦!,注意:进入页面后,点击课堂实录之一或其它,*当然点点广告也是不错的选择*;然后在新页面中再点课堂实录就可以观看了,非常清晰,但有些时段国家教育资源公共服务平台打不开,请另找时间观看。配套的教学资源如课件等等,建议用电脑下载,否则很烦,很烦的,直接百度"备课吧123ppt"吧)




温馨提示:课堂实录建议在WIFI下或有不限流量的套餐情况下观看,教学资源建议先记住网址,后在电脑上下载,否则很烦很烦。

(注:以上资源均来自网络搜索,综合了人教网、国家教育资源公共服务平台等相关内容,仅限于公益研究,只想为老师做点事,仅此而已,如有侵权,请联系删除,谢谢!)



   





好文推荐(点击下列标题即可阅读),请转给你的学生或相关学科教师,谢谢!


1. 赢在起跑线 | 小升初预科班免费公益在线课程·数学

2. 赢在起跑线 | 小升初预科班免费公益在线课程·语文

3. 赢在起跑线 | 小升初预科班免费公益在线课程·英语

4. 预习·提前备课系列|人教版一年级数学上(2018)

5. 预习·提前备课系列|人教版二年级数学上(2018)

6. 预习·提前备课系列|人教版三年级数学上(2018)

7. 预习·提前备课系列|人教版四年级数学上(2018)

8. 预习·提前备课系列|人教版五年级数学上(2018)

9. 预习·提前备课系列|人教版六年级数学上(2018)

10. 起步·提升系列 | 人教版七年级数学上(2018)

11. 起步·提升系列 | 人教版八年级数学上(2018)

12. 人教版九年级数学上

13. 预习·提前备课系列|北师大版一年级数学上(2018)

14. 预习·提前备课系列|北师大版二年级数学上(2018)

15. 预习·提前备课系列|北师大版三年级数学上(2018)

16. 预习·提前备课系列|北师大版四年级数学上(2018) 

17. 预习·提前备课系列|北师大版五年级数学上(2018)

18. 预习·提前备课系列|北师大版六年级数学上(2018)


免责声明

本文只提供一个方便手机浏览、观看的网页导航,所有内容,版权归原作者及原出处所有,转载仅为方便教师学习研究,不用于任何商业用途,如有侵权或其它问题,请立即联系我们更正或删除,谢谢。


温馨提示:   近段时间用手机观看国家教育资源公共服务平台的课堂实录,常常会因网速造成不能观看,以下内容个别课时,个别手机可能未能正常观看,请先收藏,以后再看,或转发到电脑上观看,具体操作见“技术帖|教程:如何将微信上的内容转到电脑上阅读、观看和下载。



往期内容精选

 (点击下列标题即可阅读)
 七年级数学下册,教学设计、课堂实录、教学资源(一)

  八年级数学下册,教学设计、课堂实录、教学资源(一)

 九年级数学下册,教学设计、课堂实录、教学资源(一) 九年级数学下册,教学设计、课堂实录、教学资源(二)

  一年级下册(数学•人教版),教学设计、课堂实录、教学资源(一)

 二年级下册(数学•人教版),教学设计、课堂实录、教学资源(一)
 三年级下册(数学•人教版),教学设计、课堂实录、教学资源(一) 四年级下册(数学•人教版),教学设计、课堂实录、教学资源(一)
 五年级下册(数学•人教版),教学设计、课堂实录、教学资源(一) 

六年级下册(数学•人教版),教学设计、课堂实录、教学资源(一)六年级下册(数学•北师大版),教学设计、课堂实录、教学资源(一) 五年级下册(数学•北师大版),教学设计、课堂实录、教学资源(一) 四年级下册(数学•北师大版),教学设计、课堂实录、教学资源(一) 三年级下册(数学•北师大版),教学设计、课堂实录、教学资源(一) 二年级下册(数学•北师大版),教学设计、课堂实录、教学资源(一) 一年级下册(数学•北师大版),教学设计、课堂实录、教学资源(一)




              



你 · 的


阳光教研


教学、教研、休闲、娱乐


长按识别二维码关注阳光教研

点“往期文章”查看往期内容

微信号:yangguang-jiaoyan


温馨提示

      有小孩在读高中的教师、有哥姐在读高中的同学,请长按下面二维码关注“阳光备课”。阳光备课有高中各学科每一节课的课堂实录呵,学生课堂上听不懂,可课后观看,优秀生可提前自学,转发吧。



*注:课件下载方式如下,请仔细阅读:

内容:2018秋季开学第1课教学课件(1-9年级)

方法

      关注 “阳光教研”公众号,然后点页面左下角的键盘按钮(如下图)


       对话框里回复关键词“2018第1课,祝大家工作顺利,家庭幸福!



点赞、分享,是最好的支持!

觉得不错,请转发。转发是一种美德!  

点击阅读原文↓观看视频    



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存