金磊——焦半径与焦点三角形性质 ---“圆锥曲线系统讲义”第一篇
The following article is from 金磊讲几何构型 Author 金磊几何
圆锥曲线是高中教材中的内容,是高考中的重点和难点,一般高考卷中的最后两个压轴题中会有一个是圆锥曲线。当然她也是自主招生及数学竞赛中的一块“硬骨头”。因为往往有很大的计算量,对字母运算的要求相当高,一般高中数学联赛一试的大题中必有一个圆锥曲线的计算题,而且往往是最后一题压轴题。今年CMO中第4题又考察了椭圆的尺规作图问题,这更突显了她的重要地位。她既能联通高考与竞赛,又能联系代数和几何,还能贯通中学与大学,是所有学生都必须熟练掌握的内容。
相关的书籍和文章汗牛充栋、层出不穷,但是往往陈陈相因、就题论题,很少见到详细、系统介绍总结圆锥曲线相关性质的文章。因此本人准备写上系列文章介绍圆锥曲线的常见性质和问题,这些性质和问题往往是对一般的椭圆或者双曲线抛物线都具有的性质。此系列文章适合比较优秀的高考学生(希望高考数学得高分的学生)以及准备自主招生和数学竞赛的学生,难度基本控制在高中数学联赛一试以内,希望学生通过阅读和联系文章中的性质,迅速理解此类问题的常见结论、掌握常用方法和技巧。这些内容也不是很多,但是应该都是很经典而且重要的性质。这些性质往往来源于经典问题或者高考题、竞赛题的一般化推广。而且此系列文章以椭圆为主,然后类推到双曲线、抛物线中,最后对于双曲线抛物线独有的性质再专门介绍。此系列开始的文章偏向于基本的联立方程运算,一般不专门涉及平面几何性质方法、参数方程、极坐标方法等。这些后面会专门作为章节介绍。
有关焦点三角形的文章很多,但是大多数只是只鳞片爪的介绍几个问题和结论,本文准备系统总结相关性质和问题。
思路分析:用切线长相等即可将PJ用三边表示即可求出PJ。
欲求r,要么直接在直角三角形PIJ中用定义,要么将三角形面积用三种形式表示出来:底乘高除2、(2)中结论及由内心分成的三个高相等的小三角形面积和,由面积相等得到等式应该就能得到证明了。
思路分析:先取一些特殊点猜出结果然后证明。P位于右顶点时,I’与P重合,“想得美”——我们先考虑最好的结果:即过右定点且垂直于x轴的直线。这样只需证明此圆与x轴的切点为右顶点,即算出一个切线长度即可。从而得到思路:类似于上题中求PJ,算出一个切线长即可。
注:本题解法较多,上述方法相对简洁。综合利用前面焦点三角形知识,难度高于高考,基本达到了自主招生或者竞赛难度。
注:显然G轨迹依然为椭圆,而且是一个与原椭圆以原点为位似中心,位似比为1:3的小椭圆。
三角形的心很多,△F1F2P外心显然在y轴上,其他心的轨迹也基本都能求出来。大家有兴趣可以看这个动画,追踪了焦点三角形常见特殊点的轨迹,基本是“群魔乱舞”。
大多数特殊点轨迹是二次或者四次曲线。最终形状有些像一个苍蝇。有兴趣的读者可以进一步探求。
椭圆焦点三角形的常见性质基本就是上面这些,当然他们几乎都能类比到双曲线中。首先公式推导中也可以得到完全相同的第二定义,可以对照第1篇文章看。
由对称性,不妨设P在右支,此时焦半径公式为:
一般我们称圆锥曲线含有焦点的部分为其内部,这样可以发现双曲线和椭圆内部和外部反过来了,所以双曲线焦点三角形内切圆对应椭圆的旁切圆,顶角对应椭圆顶角的补角,这样相应的结论为:
对于抛物线,因为只有一个焦点,一般认为没有焦点三角形。当然如果认为另一个焦点为无穷远点的话,过P作x轴平行线,将此直线与PF及x轴正半轴围成的图形作为焦点三角形,也可以得到一些焦点三角形的性质。
对
应
练
习
往期回顾
一、集合、充分条件与必要条件部分
二、函数与方程部分
邹生书——二次函数方程a[f(x)]^2+bf(x)+c=0实根问题的求解通法
三、数列部分
做一题,归一类,得一法(八)上——求通项重转化,招数用尽需归纳
做一题,归一类,得一法(八)下——求通项重转化,招数用尽需归纳
三、不等式部分
四、解析几何部分
【读者来稿】再谈重庆市南开中学2019-2020学年高一下学期期末数学考试解析几何解答题
五、立体几何
公众号“潘越高中数学”诚邀高中数学教师和热爱数学的朋友不吝赐稿!
来稿时请注意以下几点:
(1)来稿请注明真实姓名、工作单位、联系方式(无具体工作单位和真实姓名的投稿,一般都不予采用)。
(2)来稿一般要求同时用word文档和PDF格式的电子稿件(防止不同版本出现乱码)。
(3)文稿请认真审查,防止错漏,确保无误,来稿文责自负。
(4)投稿邮箱:panyuezhez@foxmail.com。
(5)来稿作者请随稿附上“作者简介”,为让广大读者更好地了解作者的研究成果和方向,以便进一步学习作者的相关数学思想或解题方法。