从阿尔兹海默症看疫苗百年发展
The following article is from 医药速览 Author 邻家老三
Aducanumab(阿杜那单抗),商品名Aduhelm,2021.06.07被FDA批准在美上市,用于阿尔兹海默症(俗称老年痴呆症)治疗,是全球首个针对该疾病潜在致病机理的疗法。
Aducanumab结构图,绿色代表重链,天蓝色代表轻链,红蓝色为β淀粉样蛋白1-11多肽
图源:Structural and kinetic basis for the selectivity of aducanumab for aggregated forms of amyloid-β
于此同时,全球首款针对阿尔兹海默症的鼻喷疫苗Protollin正在进行I期临床试验,旨在评估疫苗安全性、耐受性和有效性。Protollin由脑膜炎球菌外膜蛋白和志贺氏菌脂多糖非共价结合制成(Protollin为TLR2和TLR4激动剂,也常作为新型佐剂应用于科研实验),通过刺激机体先天免疫系统,用于清除导致记忆缺失的病理性β-淀粉样蛋白和Tau蛋白。(🔗 复习:多糖+载体蛋白=多糖结合疫苗)
随着生物技术的发展,疾病治疗逐渐呈现“多方法”态势。单抗、多抗、CAR-T、TCR-T、CAR-NK、mRNA、PROTAC等处于不同研发、临床阶段的疗法为过去“无药可医”的患者带来希望,每次临床试验的成功都令世人心潮澎湃,热血沸腾。
Edward Jenner(图片来源wapbaike.baidu.com)
这种状态在人类与疾病斗争的历史上并不少见。18世纪天花流行的欧洲,每年50万人因此死亡。在Edward Jenner发明牛痘疫苗之前,欧洲人采用源自10世纪中国的天花预防经验,即将天花病人的脓包液经过干燥吹入未感染人群的鼻内或划痕接种,实现机体免疫。这种免疫方法为天花盛行年代人类的生存提供了可能,但康复人群会留下疤痕,而且接种可能导致死亡。这种粗暴的免疫方法给人类预防接种带来阴影,其影响之深远甚至持续至今。1796年Edward Jenner从挤奶女工的事例中找到了预防天花的灵感。牛痘疫苗的发明标志着“疫苗学的诞生”,Edward Jenner也因此被称为“免疫学之父”。
科学的发展,总是呈现“阶梯状”,一旦有了开始,就会不断发展。Jenner的发现为人类应对天花感染做出了重要贡献,但他并不知道其中原理。真正科学意义的疫苗诞生始于一个世纪以后,即Robert Koch(细菌学之父)和 Louis Pasteur(微生物学之父)发现引起感染性疾病的元凶是微生物之后。
Robert Koch和Louis Pasteur(图片来源www.360doc.com和courses.lumenlearning.com)
Pasteur在实验室通过干燥、热处理、暴氧及非适宜宿主传代(如猪瘟病毒在兔体内传代以实现减毒效果)等方法试图降低病原毒性。第一个实验对象是引起禽霍乱的细菌,现在也被称为“多杀性巴氏杆菌”。
第一个用减毒方法开发的人用疫苗是狂犬疫苗(狂犬病毒在兔脊髓中繁殖,通过干燥减毒)。该疫苗1885年成功应用在被病狗咬伤的男孩Josef Meister身上。尽管这种狂犬疫苗有时造成接种对象死亡,但来自欧洲,俄罗斯和美国需要接受救治的患者依旧络绎不绝(当时别无他法,毕竟这是一份生存的希望)。
于此同时,炭疽减毒疫苗问世。几年后,基于Pasteur的经验,Albert Calmette和Camille Guérin开发出应用于肺结核的BCG疫苗(即卡介苗,直至今日BCG疫苗仍是临床唯一可用的肺结核疫苗,它是通过牛型结核菌经过230次传代后获得的减毒疫苗)。
图源:https://www.skepticalraptor.com/skepticalraptorblog.php/bcg-vaccine-for-covid-19-100-year-old-vaccine-beneficial/
1888年,人类发现白喉和破伤风是由细菌外毒素导致的。随后,Emil von Behring和Shibasaburo Kitasato发现接种过这些毒素的动物,其血清可以为人体提供保护(抗毒素马血清一度成为稀缺药品)。
采集马血收集抗毒素血清(图片来源于百度)
1900s早期,微生物化学或物理灭活法广泛应用于如伤寒、鼠疫、霍乱和百日咳灭活疫苗(这些疫苗目前大部分已不再使用,尽管其确实有效,但其反应原性过高,会导致注射部位产生发热、疼痛和肿胀等副作用)。1924年,化学法灭活毒素成功应用,白喉和破伤风类毒素疫苗问世(铝胶佐剂提高免疫原性),并沿用至今。
图源:百度
1930s中期,流感病毒在鸡胚中培养取得成功,流感疫苗问世。1949年首次实现病毒在细胞中培养,使脊髓灰质炎病毒体外培养成为可能。1950s灭活(减毒)脊髓灰质炎疫苗问世。1960s麻疹、腮腺炎和风疹减毒疫苗问世。随后,水痘带状疱疹病毒、轮状病毒和流感病毒(细胞培养)疫苗也相继问世并沿用至今
▉ 多糖结合疫苗—开启疫苗新篇章
1960s人们发现针对脑膜炎球菌多糖的抗体可为机体提供保护。于是1970s,针对脑膜炎球菌A、C、Y、W血清型的纯化多糖疫苗,抗肺炎球菌23价多糖疫苗和B型流感嗜血杆菌疫苗陆续得到开发。然而,多糖疫苗的免疫效果并不理想,科学家通过“组合疗法”解决了问题。
多糖结合疫苗标志着以Jenner和Pasteur为先锋,通过经验主义开发疫苗时代的结束。1970s后期,新技术的应用为疫苗的发展注入了新的活力(合理设计疫苗时代的开启)。判断疫苗开发是经验主义还是合理设计,可通过疫苗制备是否单纯通过微生物培养来衡量(正如Pasteur之前那样)。通过经验主义开发的疫苗被称为“传统疫苗”,通过合理设计开发的疫苗被称为“新型疫苗”。
https://www.science20.com/science_20/vlp_vaccines_tobacco_saves_lives-84047
1970s中期,Maurice Hilleman打算研制HBV疫苗(乙肝疫苗),然而HBV无法在实验室培养,因此无法使用常规方法即先培养再灭活方式制备疫苗。在乙肝慢性感染者血浆中存在大量病毒样颗粒(VLPs),Hilleman通过纯化和灭活VLPs制备疫苗。这种疫苗确实有效,但除了安全问题,还有一个限制因素即需要感染病人持续提供VLPs(没有VLPs,疫苗就断货)。
葛兰素史克安在时TM乙肝疫苗(图片来源于百度)
▉ DNA重组技术
同年,重组DNA技术问世,Bill Rutter和Pablo Valenzuela克隆HBV表面抗原基因并在酵母系统中表达。通过这种方法,他们将HBV抗原整合成VLPs,其抗原性与从慢性感染病人血液中提纯的一致。这项技术,最先被默克和葛兰素史克商业化,通过在发酵系统中培养酵母就可大量制备疫苗。这也是人类首次不用培养致病微生物即可制备疫苗。
10年后,酵母和杆状病毒用于其他病毒VLPs制备,这些病毒都无法在实验室培养,如HPV16、HPV18。VLPs是近年来流行的疫苗形式,流感病毒、RSV病毒、诺如病毒和细小病毒VLPs疫苗都在进行不同阶段的临床试验。
DNA重组技术也在细菌学应用。1980s早期,百日咳灭活疫苗因副作用(事实or传说)而遭受批判,研究者迫切渴望找到一款非细胞纯化蛋白疫苗。1970s Yuji Sato发现百日咳菌液上清中主要含有2种蛋白:百日咳毒素和丝状血凝素(HA)。Sato通过化学脱毒全部上清液制备疫苗。在西方,科学家通过分别纯化毒素和HA,并添加百日咳粘附素(一种外膜蛋白),也有时是菌毛蛋白,这些毒素通过化学方法脱毒(甲醛脱毒法),而后制备疫苗。
使用重组DNA技术,将百日咳外毒素基因克隆并测序,通过将外毒素活性位点2个氨基酸改变来去除其毒性。诱变菌体可无限量产出遗传灭活的百日咳毒素(制备疫苗)。临床试验表明,这些遗传灭活毒素免疫效果远超化学灭活毒素10倍,可诱导更快、更强、更持久的免疫反应。本案中,重组DNA技术提高了抗原的质量和安全性。
▉ "反向疫苗学"
多糖结合疫苗在脑膜炎球菌A、C、Y、W成功运用,但在血清型B型不适用,B型却是造成50%全球脑膜炎病例的罪魁祸首。B型脑膜炎球菌荚膜多糖为α2-8连接多聚唾液酸,其结构与人体细胞糖蛋白(如神经细胞黏附分子1 NCAM1)一致,因此机体对B型荚膜抗原免疫耐受(识别为“自己”)。
为了克服这个困难,科学家尝试对多糖进行化学修饰(如引入N-丙酰基团)或对蛋白进行纯化制备疫苗,效果都不理想。一款OMVs(outer-membrane vesicles)疫苗取得了部分成功,该疫苗使用洗涤剂处理菌体,去除大部分菌外膜中毒性脂多糖和松散结合的蛋白,但像PorA这样紧密锚定的跨膜蛋白不会丢失,可诱导保护性免疫。OMVs疫苗在古巴、挪威、新西兰成功应用。该方法弊端是仅可对疫苗制备菌感染提供保护,但无法同时应对其他菌株感染(不同菌株含有不同PorA)即此种疫苗不具有交叉保护性。据美国CDC估计,如果要成功应对,应至少包含20种OMVs,这样才可以抵御至少80%的B型脑膜炎球菌感染。
1995年,流感病毒基因组测序成功标志着B型脑膜炎球菌疫苗制备问题可以通过基因组测序解决,即通过测序方法筛选传统方法无法发现的新抗原。这种依托于基因的抗原寻找方法称为“反向疫苗学”。通过计算机分析识别疫苗候选抗原,经过克隆并在大肠杆菌表达,然后用新抗原免疫小鼠,测定小鼠血清在补体存在情况下对菌体的杀灭能力。
新抗原接下来需要进行杀菌滴度检测,B型脑膜炎球菌间序列保守性分析,不同分离株表达水平衡量,以及与人体蛋白的同源性问题鉴定等。通过这种方法,最终筛选出3种抗原,与OMVs一同制备疫苗。2013年,通过反向遗传学以基因组为基础开发出第一款疫苗(Bexsero),在欧洲、澳大利亚和加拿大注册。当普林斯顿和圣芭芭拉大学出现B型脑膜炎球菌爆发,并同时存在部分学生感染时,该疫苗在美国这两所学校学生中进行了成功接种(在美国紧急获批)。
Bexsero由诺华开发,通过资产置换,GSK获得诺华疫苗业务(图片来源于网络)
尽管反向疫苗学开发疫苗周期较长,但由于其功能强大,已用于其他菌体,如抗生素抗性金黄色葡萄球菌疫苗开发(近日,美国CDC拨款2200万美元用于耐药菌及其感染性疾病研究。其中一部分款项即用于耐药菌基因组研究)。当一种病原微生物存在多种基因组时(多菌株,多血清型),需要多基因组比对,才能制备通用疫苗。对致病性大肠杆菌和普通大肠杆菌比对,可找出其致病性抗原。
利用该方法,还可进行肺炎衣原体和结核分支杆菌T细胞抗原鉴定。反向疫苗学是当前可用的筛选抗原的有力工具,可用于菌体和寄生虫全抗原(蛋白质)搜索。但该方法无法预测多糖抗原,也无法解决HIV和RSV的问题(他们的保护性抗原经常变化或存在蛋白质构像问题)。
反向疫苗学方法探索B型脑膜炎球菌抗原示意图
▉ 基于抗原结构的疫苗设计
过去几年,X晶体衍射技术,核磁共振成像,电子显微镜(三大法宝)提高了我们对蛋白质三维结构的认识,使我们可以从原子水平了解关键抗原及表位的信息。无论抗原以单独形式存在还是与抗体结合,都不影响我们对其结构的认识。如此,我们可以对抗原进行结构设计,以提高其免疫原性。
在脑膜炎球菌H因子结合蛋白案例中,科学家从3种脑膜炎球菌抗原变体中筛选非重叠抗原,产生的单分子可诱导针对所有变体的保护性抗体。对于RSV F融合蛋白,其融合前构象可诱导较高滴度中和抗体。通过对F蛋白三维结构分析,在两个氨基酸残基中引入半胱氨酸,半胱氨酸间形成二硫键,将F蛋白锁定在融合前构象,即使两个氨基酸位点靠近(融合后这两个氨基酸就会相距较远)。或许,通过这种方法可以开发出一款安全有效的RSV疫苗(目前,RSV疫苗开发仍具有难度)。
以上,仅为疫苗结构设计的开端,未来,结构设计将成为疫苗设计的常规方法,有可能用于HIV疫苗开发。
▉ 合成生物学
2010年,Craig Venter团队成功将合成的超过50万碱基的基因组植入生殖支原体细胞质,这一做法标志着体外合成DNA、RNA用于疫苗开发成为可能。
2013年4月24日,中国CDC发现H7N9流感毒株,将其HA、NA抗原序列公开。第二天,Venter实验室就合成了HA、NA抗原序列,协同载有其他6段流感RNA片段的线性质粒转染细胞,几天后,分离出“新病毒”。该病毒作为亚单位疫苗种子,在细胞中培养。I期临床试验表明,其可诱导保护性抗体(这是合成生物学研究成果首次在人体开展试验)。在流行病爆发时,通过该方法,可快速制备疫苗(2013年,关于Craig Venter团队和瑞士制药公司诺华合作,利用中国CDC上传的H7N9开发疫苗存在着版权问题,损害了中国的利益,后被妥善处理。本文仅探讨合成生物学在传染病爆发期间对疾病控制,疫苗制备的意义,不对其他进行评定)。
合成的H7N9 HA也可用于自扩增mRNA(SAM self-amplifying)制备。H7N9报道后8天H7N9 HA SAM就展开动物实验,二免后3周小鼠产生HA特异性保护抗体,这距离H7N9报道后还不足40天(速度之快令人赞叹)。
与之相比,或许传统疫苗还停留在病原收集,资质机构运送,病毒在鸡胚中培养,分发给制造商制备疫苗的某一阶段。而且,2020年底推出的mRNA新冠疫苗也证明了新技术手段在应对流行病方面的速度优势。
▉ 佐剂
除了疫苗的核心“抗原”以外,佐剂也很重要(佐剂为非活non-living疫苗提供了免疫激活帮助)。人类历史上佐剂经历了铝胶佐剂(1920s)、水包油乳剂(1997年诺华MF59以及GSK AS03)的变化。近年来,由于固有免疫信号传导途径的发现,TLR激动剂也用于佐剂开发:如GSK开发由MPL和铝胶构成的AS04,靶向TLR4,作为HPV疫苗的佐剂;以及文章开头介绍的Protollin和CpG(TLR9激动剂)等。
这些佐剂开启了疫苗的新时代,使抗原更具靶向性,如靶向TLR7的小分子,可携带抗原至APC和淋巴结发挥局部效应。合成小分子佐剂的设计将成为未来一个新兴领域,疫苗的用途也会由单纯的预防逐渐转变为预防和治疗相结合。
▉ 总结
公元前430年的希腊雅典(公元前431-404),瘟疫肆虐,1/3的人口因此丧生。瘟疫使人们不再关心法律,女人不再被习俗禁锢,人民失去对宗教的信仰。如今,仅在美国,疫苗就预防了超过1亿种疾病的发生。全球每年有250万人因防疫而免于死亡-折合每天7000人。疫苗,在我们的生活中分量越来越重。1796到1980年,疫苗学进展表现在新抗原发现和病原的大规模培养,用于灭活、减毒疫苗制备上。过去的40年,反向疫苗学、结构疫苗学、合成生物学为疫苗学发展带来新动能。佐剂的发展给疫苗学增添色彩,系统生物学为疫苗安全性和免疫效果的分子机制提供理论依据(通过建立代谢和免疫的关系,未来通过区分PBMCs基因表达,科学家就可判定疫苗的免疫效果,或者用于疫苗的开发设计)。或许未来某一天,我们不再需要大规模的临床试验,便可对药物,对疫苗进行评价,获知其安全性和有效性的可靠信息。
Illustration by Jennifer Broza
参考文献:
1. A novel intranasal Protollin-based measles vaccine induces mucosal and systemic neutralizing antibody responses and cell-mediated immunity in mice.Sophie Chabot.Vaccine. 2005 Feb 3;23(11):1374-83.
2. From empiricism to rational design:a personal perspective of the evolution of vaccine development.Ennio De Gregorio and Rino Rappuoli. IMMUNOLOGY.2014 July.Vol 14.
编辑人:宁帅同学
推文用于传递知识,如因版权等有疑问,请于本文刊发30日内联系医药速览。
原创内容未经授权,禁止转载至其他平台。
有问题可发邮件至yong_wang@pku.edu.cn获取更多信息。
©2021 医药速览 保留所有权利
温馨提示
简单操作即可星标⭐️医药速览,第一时间收到我们的推送①点击标题下方“医药速览” ②至右上角“...” ③点击“设为星标”
猜您喜欢(点击下方标题即可观看):
3.战俘营里的大学
4.给山药削皮手会痒?只因为你少了这个操作
5.迄今为止最大规模研究证实,棕色脂肪能让人做健康的“胖子”
6.学区房究竟有多大作用?看看最牛学区房--从孟母三迁谈起
7.新研究发现“伟哥”的新用途:预防心血管疾病,并延长寿命...
8.撬开扇贝的壳时,它的200只眼睛正在盯着你……
10.吃辣的学问,全都在化学丨味觉化学
11.从森林走来,栖息在城市中
20.新研究发现:人造甜味剂会促进全身炎症和脂肪肝的发展,不过有一种甜味剂例外…
24.【诺奖得主Wilczek科普专栏】要不设立一个反诺贝尔奖?
29.头发稀疏、脱发和秃顶的原因终于找到啦 |荣登《自然衰老》杂志
34.塑料不消化,吃下去大不了拉出来?不,它还跑进了人类胎盘
39.飞行器像蜜蜂一样避障?《Nature》发表代尔夫特理工大学机器学习飞行器
49. 间歇性禁食的益处再添新证:降血压立竿见影,胆汁酸或是关键!
59.雄蝇授精后,会“看守”雌蝇,直至受精卵排到牛粪上…动物奇特的生殖方式里隐藏着怎样的演化奥秘?
70.闲谈美国大学tenure track制度:菲尔兹奖得主也曾挣扎
81.BMC子刊:50万人大型研究,喝任何咖啡都能降低肝病风险
83.专访理论物理学家内森·塞伯格:数学对终极物理学理论的导引
99. Netflix 纪录片《流行病:如何预防大爆发 》全6集
110. BBC纪录片《性格的真相》(The Truth About Personality )
113. 2021诺贝尔生理或医学奖:身体感受冷热、触觉的科学解释
114. 2021年诺贝尔化学奖揭晓:不对称有机催化研究获奖
118. 联合二甲双胍,四类常见降糖疗法效果有何差别?ADA重磅发表“迄今最大最长”研究
121. 诺奖青睐的触觉研究是怎么做出来的?| Piezo封神之路(上)
123.专访丁奎岭:化学诺奖发错了吗?合成化学的下一个突破在哪里?
132. 法语、德语、意大利语、罗曼什语、英语:瑞士人是如何彼此沟通交流的?
137. 马斯克脑机接口新进展:猴子用意念打“乒乓”游戏丨环球科学要闻
138. 人口出生率正式跌破1%,我们将面临现实版的“老鼠乐园”吗?
142. 恼人的唇疱疹又发作了……新发现揭示了它反复发病的机制
143. 《细胞》子刊:科学家首次实现胰腺导管类器官的体外建模