举个栗子说|核心素养之数学抽象怎么考?
手机在手,备课无忧,学习不愁
点击上方蓝字,随时随地备课
请各位老师点击上方蓝字关注阳光备课,及时了解最新内容。
关注“阳光备课”,点“往期文章”,必有你所需。
文章底部有WORD版课标下载
课标修订版的解读将陆续推出,敬请关注!
——阳光备课
一、数学抽象是什么?
数学抽象是指通过对数量关系与空间形式的抽象,得到数学研究对象的素养。主要包括:从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并用数学语言予以表征。(概念内涵)
数学抽象是数学的基本思想,是形成理性思维的重要基础,反映了数学的本质特征,贯穿在数学产生、发展、应用的过程中。数学抽象使得数学成为高度概括、表达准确、结论一般、有序多级的系统。(学科价值)
数学抽象主要表现为:获得数学概念和规则,提出数学命题和模型,形成数学方法与思想,认识数学结构与体系。(学生表现)
通过高中数学课程的学习,学生能在情境中抽象出数学概念、命题、方法和体系,积累从具体到抽象的活动经验;养成在日常生活和实践中一般性思考问题的习惯,把握事物的本质,以简驭繁;运用数学抽象的思维方式思考并解决问题。(具体内容)
二、数学抽象怎么考?
不同名词、动词...对应不同水平......
呵呵!!!!!!!!!!!!
详见下面列表:
(请左右对照,仔细体会!)
(点击图片,可大图阅读)
你看懂了吗?
字太多,
句子太啰嗦。
唉!!!!!!!
请左右对照,仔细揣摩!
左 | 右 |
...在熟悉的情境... ... | ...在关联的情境... ... |
… | … |
… | … |
原来
水平一、水平二、水平三(略)
都分四个小段。
每个小段依次是:
情境与问题、
知识与技能、
思维与表达、
交流与反思。
(我重读一次)
每个小段依次是:
情境与问题、
知识与技能、
思维与表达、
交流与反思。
如下表所示:
结构是
.
左右对照,揣摩发现:
情境有三种,
分别是:生活情境、数学情境、科学情境
层次有三个
分别是:熟悉的、关联的、综合的
问题有三类
分别是:简单的、较为复杂的、复杂的
上述三个要素是构成数学核心素养水平划分的基础。
水平一:熟悉的情境,简单的问题;
水平二:关联的情境,较为复杂的问题;
水平三:综合的情境,复杂的问题
哈哈,排列组合。
.
三、案例剖析
这些是课标的案例,请仔细阅读。
案例1:速度与路程问题
【目的】说明数学抽象素养的表现和水平,体会评价“在熟悉的情境中直接抽象出数学概念和规则”的满意原则和加分原则。
【情境】学校宿舍与办公室相距a m。某同学有重要材料要送交给老师,从宿舍出发,先匀速跑步3 min来到办公室,停留2 min,然后匀速步行10 min返回宿含。在这个过程中,这位同学行进的速度和行走的路程都是时间的函数,画出速度函数和路程函数的示意图。
速度与路程是日常生活中的基本活动(问题与情境),
我们通常可以把速度与时间、路程与时间的关系抽象为一种函数关系(知识与技能),
表达函数关系的数学方法包括解析式、列表和图像(思维与表达)。
本题中路程与时间的函数关系可用图1表示:
【分析】回顾课程标准的要求,在实际情境中能够用图象揭示图数性质,整体反映函数的基本特征。本题答案的示意图如图15所示。
解答本题时,能给出速度函数或路程函数的大部分示意图,根据满意原则,可以认为达到数学抽象素养水平一的要求;
能够完整画出速度函数和路程函数示意图(二者自变量一致),可以认为达到数学抽象素养水平二的要求。
本案例还考查了学生的直观想象素养。
这是《普通高中数学课程标准》(2017版)第145页的案例20
也是胡凤娟,保继光,任子朝,陈 昂等专家文章的案例.
案例2:传令兵问题
【目的】说明数学抽象素养的表现和水平,体会评价“分析数学命题的条件与结论,在具体的情境中抽象出数学问题”的满意原则和加分原则。
【情境】有一支队伍长Lm,以速度v匀速前进。排尾的传令兵因传达命令赶赴排头,到达排头后立即返回,往返速度不变。回答下列问题:
(1)如果传令兵行进的速度为整个队伍行进速度的2倍,求传令兵回到排尾时所走的路程;
(2)如果传令兵回到排尾时,全队正好前进了Lm,求传令兵行走的路程。
【分析】
正确给出(1)的解答,可以认为达到数学抽象素养水平一的要
求;
正确给出(2)的解答,可以认为达到数学抽象素养水平二的要求。
这个问题也可以考查逻辑推理、数学运算等素养。
这是《普通高中数学课程标准》(2017版)的案例21
案例3:覆盖问题
【目的】以平面几何为知识载体,以证明“周长一定的四边形中正方形所围面积最大”为数学任务,说明逻辑推理素养水平一、水平二、水平三和数学抽象素养水平一、水平二的表现,体会满意原则和加分原则。
【情境】设桌面上有一个由铁丝围成的封闭曲线,周长是2L。回答下面的问题:
(1)当封闭曲线为平行四边形时,用直径为L的圆形纸片是否能完全覆盖这个平行四边形?请说明理由。
(2)求证:当封闭曲线是四边形时,正方形的面积最大。
【分析】虽然问题涉及的知识不难,但由于问题中的封闭曲线是动态的、问题是开放的,因此需要一定的数学抽象和逻辑推理素养才可能抓住问题的本质。如果学生能够构建过渡性命题、完成概念的抽象过程,并且论证途径清晰、推理过程表述严谨,可以认为达到逻辑推理素养水平三的要求。
(1)首先,需要从生活语言到数学语言,表达清楚什么是完全覆盖。最初的生活语言可以是,周长为2L的平行四边形包含的点都在直径为L的圆面内,显然这个层面的表达是无法进行论证的;用数学语言可以表述为,周长为2L的平行四边形内的任意一点到圆心的距离不大于L/2,可是,这样的表述又脱离了完全覆盖的背景;因此需要在表述中加上条件,
例如让平行四边形的对称中心与圆的圆心重合。鼓励学生回顾并表述上面的思维过程。如果学生能够完成前两个过程,根据满意原则,可以认为达到数学抽象素养水平一的要求,
如果学生能够完成三个过程,根据加分原则,可以认为达到数学抽象素养水平二的要求。
如果学生能够得到可以完全覆盖的结论,但只是证明了平行四边形对角线的长度不大于L,说明学生已经有了论证的思路,但还没有理解完全覆盖的几何本质,依据满意原则,可以认为达到逻辑推理素养水平一的要求。
如果学生进一步证明平行四边形四个顶点到对称中心距离不大于圆的半径,但没有说明平行四边形内其他点的情况,说明学生理解了完全覆盖的几何本质,但证明过程还不够严谨,依据满意原则,可以认为达到逻辑推理素养水平二的要求。
如果学生能够完整证明平行四边形上的点到对称中心距离部不大于圆的半径,说明学生基本掌握了数学证明,依据加分原则,可以认为达到逻辑推理素养水平三的要求。
(2)可以启发学生,采用列举、筛选的方法考察各种形式的四边形,逐一排除面积较小的四边形,构建一个递进式的证明路径,如图19所示。
图19探索证明路径
如果学生能够独立完成上面的过程,说明对较复杂的新问题,能够直观想象、创造性地构建证明路径,依据满意原则,可以认为达到逻辑推理素养水平二的要求,
如果学生能够进一步用数学语言严谨地论证所得到的结论,根据加分原则,可以认为达到逻辑推理素养水平三的要求。
这是《普通高中数学课程标准》(2017版)的案例25
文本来源:《普通高中数学课程标准》(2017版)
参考文献
[1]中华人民共和国教育部.普通高中数学课程标准(2017年版)[S].北京:人民教育出版社,2018
[2]胡凤娟,保继光,任子朝,陈 昂.高中数学核心素养测评案例研究[J].中国考试.2017(11):10-16
(温馨提示:举个例子说|核心素养怎么考?系列文章已经推出,请大家点“往期文章”查找、阅读)
欢迎转载,但请注明来自微信公众号:阳光备课。
(以上内容整理过程可能有错漏,请以教育部的文本为准,整理过程参考并摘录了网上内容,特别是胡凤娟、保继光、任子朝 、陈 昂等专家的文章,在此致谢!此文仅仅是为了让广大教师尽快了解新的课程标准,若有异议,请联系删除!)
推荐阅读(点下列标题可阅读):
2.
部级优课推荐(点击下列标题即可阅读):
1.
3.
4.
5.
6.
7.
8.
9.
10.
11.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
1.
2.
3.
6.
1-9年级开学第1课系列
(点击下列标题即可阅读)
10.一年级语文开学第1课【课标解读、教材分析、教学设计、课堂实录】 |
11.二年级语文开学第1课【课标解读、教材分析、教学设计、课堂实录】 |
1-9年级预习·提前备课系列
(点击下列标题即可阅读)
9. 人教版九年级数学上
10. 预习·提前备课系列|北师大版一年级数学上(2018)
11. 预习·提前备课系列|北师大版二年级数学上(2018)
12. 预习·提前备课系列|北师大版三年级数学上(2018)
13. 预习·提前备课系列|北师大版四年级数学上(2018)
14. 预习·提前备课系列|北师大版五年级数学上(2018)
15. 预习·提前备课系列|北师大版六年级数学上(2018)
还有更多在继续发布....
9年级赢在起跑线系列
温馨提示: 近段时间用手机观看国家教育资源公共服务平台的课堂实录,常常会因网速造成不能观看,以下内容个别课时,个别手机可能不能正常观看,请先收藏,以后再看,或转发到电脑上观看,具体操作见“技术帖|教程:如何将微信上的内容转到电脑上阅读、观看和下载。”
免责声明
史宁中|高中数学课程标准修订中的关键问题权威解读|高中数学课程标准“修订思路”“组织”及“过程”
高考数学的三个话题:为什么考,考什么,怎么考? 过一遍:统计、概率(选择填空题)每日必读:近七年(含2017)新课标全国Ⅰ卷理科数学高考试题分析及2018年高考预测每日必读:近七年(含2017)新课标全国Ⅰ卷文科数学高考试题分析及2018年高考预测回头看:《统计与概率》考情分析及备考策略回头看:《立体几何》考情分析及得分策略回头看:三角、数列考情分析及备考策略回头看:《解析几何》考情分析及得分策略抢先看:2018年9月使用的高中数学新教材目录及框架
一分钟读懂普通高中数学课程标准(2017版) 数学必修1教学设计、课堂实录、教学资源(二)数学必修2教学设计、课堂实录、教学资源(二)数学必修3教学设计、课堂实录、教学资源(2017)数学必修4教学设计、课堂实录、教学资源(2017) 数学必修5教学设计、课堂实录、教学资源(一)
数学选修1-1教学设计、课堂实录、教学资源(一) 数学选修2-1教学设计、课堂实录、教学资源(一) 数学选修1-2教学设计、课堂实录、教学资源 数学选修2-2教学设计、课堂实录、教学资源(一) 数学选修2-2教学设计、课堂实录、教学资源(二) 数学选修2-3教学设计、课堂实录、教学资源(二) 数学选修4-4教学设计、课堂实录、教学资源(一)
数学选修4-5教学设计、课堂实录、教学资源 高考数学二轮复习指导系列之三(三角函数)高考数学二轮复习指导系列之四(解析几何)高考数学二轮复习指导系列之二(立体几何)高考数学二轮复习指导系列之一(统计与概率)高一数学开学第1课|1.1.1 算法的概念教什么,怎么教 高一数学 弧度制 教什么,怎么教
程序框图与算法的基本逻辑结构(第一课时)教学设计及教学实录
高一数学开学第1课|1.1.1 任意角 教什么,怎么教
高二数学开学第1课|1.1回归分析的基本思想及其初步应用教什么,怎么教
高二数学开学第1课|1.1.1 变化率问题教什么,怎么教 高一数学开学第1课|1.1.1 任意角 教什么,怎么教
你 · 的
阳光备课
教学、教研、休闲、娱乐
长按识别二维码关注我们
查看历史消息看往期内容
温馨提示
有小孩在读小学、初中的教师,有弟妹在读小学、初中的同学,请长按识别下面二维码关注“阳光教研”。阳光教研有一至九年级各学科每一节课的课堂实录啊,学生课堂上听不懂,可课后观看;优秀生可提前自学,转发吧。
▼
欢迎转发朋友圈。