查看原文
其他

癌症为什么会复发、会转移?谜底揭示攻克恶性肿瘤新策略

成哇 2023-07-10

The following article is from 返朴 Author Bakhoum


点击上方蓝字“返朴”进入主页,可关注查阅往期文章


癌细胞与免疫系统之间的厮杀,还有太多谜团。每一次探寻,都带来新的希望。







撰文 | Samuel F. Bakhoum(纪念斯隆凯特琳癌症中心)

编译 | Kestrel


事情过去已有七年了,可当时失落的感受至今依然清晰。


那是2015年的一天,我拿到一位病人的肿瘤组织DNA测序结果,她的肺癌已经转移到了脑部,但是在报告里我找不到半点可以指明治疗靶标的基因改变,同时,另一件事引起了我的注意:数据显示,几乎每条染色体在结构上、数目上都发生了很多变化。


正常细胞中,每条染色体有两份拷贝,但癌细胞里面的染色体则不然,拷贝数目多少不定,少的只有一份,多的可以有五六份拷贝,有时候还会出现染色体碎片。这种基因组混乱的现象称为“染色体不稳定性”(chromosome instability),简称CIN。虽然癌症研究者和临床医生早就知道CIN是癌症进展到晚期或有转移的标志,但我从来没见过像这位病人这样,才59岁情况就这么严重的,更何况她才确诊不久,而一般认为CIN是在比较长的时间跨度上逐渐发生的。


肿瘤科医生对此束手无策,因为针对CIN没有太好的靶向疗法,病人只能简单地接受多轮全身化疗和放疗。我的病人也一样,除了一般性的副作用,她还得承受脑部放疗带来的神经毒性,可能会造成失忆和其它认知缺陷。


如此困境令我联想起自己的细胞生物学背景。过去,我读博期间的科研工作就是去搞清楚正常细胞有丝分裂过程中染色体是如何平均分配的。这个过程错综复杂,但每天都在许多组织中上演。生命体演化出多重备份机制,来确保这个过程不会出错。若万一出错,染色体数目异常的细胞也会被迅速清除。但癌细胞就不一样,它们对染色体异常的耐受性很强,且如此大尺度的基因变化与病程进展密切关联。然而,我们并不清楚,在肿瘤的发展和转移过程中,CIN是否扮演着积极的角色,又是怎样起作用的。


直到几年前,我开始着手研究CIN到底是会推动癌症发展,还是只是一种伴随癌症发生的现象。为此我与Lewis Cantley展开了合作,他当时是威尔·康奈尔医学院(Weill Cornell Medicine)迈耶癌症中心(Meyer Cancer Center)的主任,现供职于丹娜-法伯癌症研究所(Dana Farber Cancer Institute)。我们对多种染色体不稳定且具有转移性的癌细胞进行了遗传操控,降低它们的CIN水平,又不影响它们所携带的其它遗传学异常。结果非常明显,失去CIN的癌细胞同时也失去了转移的能力。还有一件事令我们惊讶,就是我们发现CIN是通过造成慢性炎症来促进癌细胞转移的。所以,归根结底,让癌细胞得以脱离原发性肿瘤而去入侵其它器官的,正是机体自身的免疫反应。


2018年,我们的工作发表在《自然》Nature杂志上。研究结果提示我们,让遗传物质变得不稳定这一步本身,对癌症的演进(evolve)至关重要。这可以成为新的治疗思路的出发点:我们能否在这一步中寻找靶点,来治疗CIN情况严重的癌症呢?能否想办法稳定基因组,或者减轻CIN造成的慢性炎症,来遏止癌症转移呢?能否改造免疫系统,让它去清除染色体数目异常的细胞呢?



针对这些关键问题,我在纪念斯隆凯特琳癌症中心(Memorial Sloan Kettering Cancer Center,MSK或MSKCC)的实验室采用了跨学科、基于细胞生物学同时结合单细胞基因组学、数学建模以及临床采样的方法。我们相信,通过整合这些方法,我们会理解CIN是怎样改变癌细胞的行为、提升癌细胞的适应性,来维持癌症发展的。进一步地,我们志在揭示是哪些细胞通路让癌细胞得以耐受CIN,然后通过靶向那些通路来治疗癌症


也是在2018年,我和Cantley以及另一位同事Olivier Elemento联合创立了Volastra Therapeutics公司,以期相互补足我们在CIN方面的学术工作。公司的科研人员正在为多种癌症开发靶向CIN的疗法。通过这样广泛的合作,我们希望为染色体不稳定性癌症患者探索和开发新的治疗方法。







被忽视的癌症标志


自从2006年科学家测得首个癌细胞基因组以来,我们一直在不断深入了解是哪些遗传物质的改变在促使癌症发生、发展。科学家们开发出了一个个靶向疗法,作用于那些促进肿瘤发展的基因。这些疗法的理念都基于这样一个假设:如果我们能抑制这些基因,肿瘤就会停止恶化。因此,我们要对肿瘤组织进行基因组测序,找出每个病患身上的促癌基因,这一步已经成为MSK许多肿瘤科医生的常规做法。但是,当测序未能帮我们找到靶点时,肿瘤个体化治疗的局限性就显现出来了:的确有一些成功的病例,但是对大多数癌症晚期病人来说,效果还是十分有限。


即使靶向疗法可以派上用场,可能也只有一开始有效,因为肿瘤会“进化”。它们经常能逃逸我们的用药。而癌细胞最强大的武器之一,就是CIN。它们每一次分裂——托CIN的福——染色体都会发生随机重排。于是,染色体分离过程中发生的错误积累起来,导致癌变的组织里面各细胞在染色体组成和拷贝数上高度异质。这种现象称为“非整倍性”(aneuploidy)。的确,多轮治疗之后还是复发的晚期肿瘤,其特征就是染色体高度不稳定及非整倍性,对这样的肿瘤,抑制单个突变基因的药物已经起不了效果,尽管这些药物曾使癌症好转。


早在数十年前,研究者就已知道非整倍性是人类癌症的一个特征,但直到1997年,约翰·霍普金斯大学医学院(Johns Hopkins University School of Medicine)的Christoph Lengauer和Bert Volgelstein才首次证明CIN在促进癌细胞异质性方面的作用。通过他们的工作,人们很快就理解到CIN有刺激肿瘤演进、恶化的潜力:CIN能够调节染色体拷贝数,因而也调节这些染色体上基因的拷贝数。近期,哈佛大学医学院的Stephen Elledge发现,人类的恶性肿瘤的确会尽可能地增加带有致癌基因的染色体拷贝数,并减少带有抑癌基因的染色体的拷贝数,从而提高自身的适应性。


尽管CIN对人类癌症来说很重要,但实验室还是聚焦在基因突变上。新一代测序技术所带来的方法学革命引导学界把目光都放在了单个基因对癌症发生的贡献上,并由此得到了许多重要的发现,扩展了我们的认识,使我们了解了许多基因在肿瘤发生过程中所起的作用。但是,这种方法也有弊端,它忽视了大尺度染色体畸变及其对基因功能和癌细胞行为的影响。从整块肿瘤组织样本中纯化出DNA,对其进行测序,固然能够让我们更清楚地看到染色体上的遗传信息,但无法将序列发生改变的DNA片段定位到染色体上,而且模糊了细胞间染色体拷贝数的异质性。


在过去的十年间,研究者开始将更多注意力放到大尺度的染色体改变上。2010年,MSK的Robert Benezra等人发表了一项重要研究,表明已经获得CIN的肿瘤不再依赖一开始引发癌症的致癌基因。具体来说,当研究者上调致癌基因KRAS诱导小鼠形成肺癌后,再取消上调,能观察到肿瘤消褪;但如果采用基因工程手段,进一步往癌变的细胞中人工引入CIN,肿瘤消褪现象就观察不到了。所谓靶向治疗,就是去特异性地抑制像KRAS这样的致癌基因,不让它们驱动肿瘤发生,但恶性肿瘤会逐渐对这种疗法产生抗性,这项工作就告诉了我们抗性是如何产生的。


此后,伦敦大学学院(University College London)及克里克研究所(Crick Institute)的Charles Swanton组给出了强有力的证据,表明CIN在人类癌症中十分重要。2017年,通过随访肺癌病人,Swanton团队证明了是染色体不稳定——而不是肿瘤基因组中点突变的个数——与整体生存率的降低相关。他们后续的研究显示,无论是肿瘤转移还是癌细胞逃逸免疫监控,CIN很可能在肿瘤生物学的方方面面都扮演着重要的角色,癌细胞每次分裂伴随的染色体拷贝数逐步改变,为肿瘤提供了能在各种选择压力下演进的能力。


正因为这些科学家们不断研究CIN在癌症中的作用,癌症基因组学与细胞生物学之间的界限逐渐在消解。一方面,染色体所携带的遗传密码可以用复杂的基因组学手段破译;另一方面,染色体生命周期与细胞分裂过程中的分离行为基本上可以用分辨率较高的光学显微镜来跟踪。例如,分离过程中出现错误的染色体最终会出现在一个容纳小段DNA的“微核”(micro-nuclei)中,与细胞核——即“主核”——分离。微核一直被看作是区分癌细胞及周围正常组织的一个特征。多个研究组的工作显示,包裹微核的核膜经常破裂,把染色体洒到细胞质中,暴露在核酸酶下,同其它蛋白质一样被降解,变得四分五裂。


图1. 微核的显微照片。细胞中的小黑点即是微核。(https://doi.org/10.1016/B978-0-12-800764-8.00006-9)


发生大规模的染色体断裂之后,有些片段会丢失,有些则会随机接在一起,那么片段与片段之间连接的方向和顺序都可能出错,从而形成新的、高度异常的染色体。这个过程称为“染色体碎裂”(chromothripsis)。近期,研究者发现,染色体碎裂是刺激癌症恶化的重要机制。除了染色体数目一步步变化外,通过大规模的染色体重排,碎裂的染色体很快就形成一个能开出癌症的大奖池——癌症一发生,就已经很严重了。这个过程有可能快速扩增致癌基因,并丢失抑癌基因。我们现在还知道,染色体碎裂可能会把致癌基因置于高度活跃的染色体区域附近,还会促进环状染色体外DNA的形成,两者都会促使肿瘤细胞快速形成对靶向治疗的抗性。


尽管研究者很早就发现了癌症中染色体的混乱状态,但直到最先进的基因组学和显微技术出现,我们对染色体碎裂过程的理解才逐渐清晰起来。2015年,丹娜-法伯癌症研究所的David Pellman及同事应用显微技术捕捉到了出现染色体分离错误的单个癌细胞,并对其进行了基因组分析。通过这种方法(他们称为Look-seq),研究者展示了在人类癌症基因组中常见的复杂染色体重排模式是怎样在一个细胞周期内出现的。通过各种各样的途径,CIN似乎既可以促进渐进式的,也可以促进间断性爆发式的肿瘤基因组演化。这,大概就是我那位病人的情况——确诊没多久就出现了大规模的染色体畸变。




微核的形成机制

细胞分裂过程中,有许多染色体分离错误都可能导致微核形成。即使最终染色体并没有错误分离,也还是有可能形成微核。例如图2所示的情况,虽然染色体最终是平均分配给了两个子细胞,但由于分离滞后,左边的子细胞还是形成了微核。这些事件不互斥,也不独立,只是每一次发生都会加剧染色体的混乱。


图2.错误附着。
当分裂细胞两极的微管附着到同一中心粒时(上),被附着染色体的分离会滞后于其它染色体,之后常常会被包裹到微核中,即使它最终还是分到了应该分去的细胞(左下)

图2.非整倍性。
如果染色体分离真的出错了,不管是由于微管错误附着还是由于其它的原因,错误分离的染色体可能会随其它染色体被核膜包裹。要是没有被包裹,形成的非整倍体细胞就可能带有一条滞后的染色体,增加微核形成的风险。
图3.染色体融合。


端粒的缩短或损坏能让染色体融合更有可能发生。这样的融合事件会产生带有两个中心粒的染色体。在下一次细胞分裂过程中,带双中心粒的染色体会被撕裂,分到两个子细胞中。这些损坏的染色体要么立即被隔离到微核中,要么在下一次细胞分裂过程中由于无法正常完成复制,还是被隔离到微核中







CIN与炎症


在研究染色体不稳定性会怎样影响癌症转移时,我们得到了意料之外的发现。具体来说,已经发生CIN的癌细胞,它的炎症相关信号通路是激活的,这就能让癌细胞产生、分泌多种与癌症转移相关的炎症因子。这件事情一开始挺迷的,因为这些细胞只是在实验室里养着,并没有种到实验动物体内,也就没有任何接触到免疫细胞的机会。那么这些“炎症反应”是什么引发的呢?


在显微镜里苦寻良久,我们不仅观察到,发生CIN的细胞内,微核占了主体,还看到那些包含破裂微核的细胞带有一种与免疫相关的酶,叫做cGAS。cGAS于2013年首次被德克萨斯大学西南医学中心(University of Texas Southwestern)的James Chen(陈志坚)发现,它是一种定位于细胞质的双链DNA感受器。于是我们设想,微核破裂后,随之而来暴露在细胞质中的染色体可能会被癌细胞识别为危险信号,就像细胞识别出入侵的病原DNA那样。当然,随后我们便确认了,破裂的微核能够强有力地激活cGAS及其相关蛋白STING,进而激活固有免疫应答。但不像几天之内就能清除的急性病毒感染,癌细胞的细胞质中,微核破裂事件一起接着一起,导致炎症通路一直处于激活状态,炎症一直持续。


至此,事情已经很清楚了:癌细胞一定是利用了某一条保护性的免疫通路,才能够冲破这些炎症防线。虽然在肿瘤发生早期,固有免疫信号通路的激活可能保护人体,预防肿瘤出现,但到了一定阶段,肿瘤细胞能够越过这些保护性机制,耐受CIN所引发的炎症反应,并逐渐利用这些通路来驱动肿瘤生长。癌细胞维持炎症的能力对其向另一器官转移至关重要。免疫细胞是机体内最机动的细胞,人体遭遇感染或出现伤口后的数小时内,它们就能穿过血管系统迁移到静水压升高的发炎组织中,到达受损区域。癌细胞就是利用CIN和其它基因组异常,通过模拟这一生理过程来实现转移


慢性炎症与癌症之间的关联由来已久。事实上,古罗马百科全书派学者Aulus Cornelis Celsus所描述的炎症最核心的特征对癌症也适用——发红、发热、疼痛肿胀,几百年来,临床医生常常将肿瘤称为“无法愈合的伤口”,因为它会持续不断地发炎。我们还不十分清楚炎症信号通路对癌症的发展起着什么样的作用,但是将内在的基因组异常(例如染色体不稳定)与癌症中持续的炎症关联起来,就能够发现,CIN不仅能驱动肿瘤的遗传异质性,也能通过非遗传性的机制(即模拟炎症反应)刺激癌症转移




核破裂如何促进癌症发展?


图4.微核破裂促进癌症发展。
微核的核膜很脆,经常破裂,导致染色体散落到细胞质中。细胞质里面的染色体会被核酸酶切成小的片段,这些片段要么丢失,要么被随机连接到一起,要么首尾相连,形成环状染色体外DNA。这个过程就是所谓的“染色体碎裂”。这个过程形成的复杂的重排染色体会驱动肿瘤的产生。
与此同时,停留在细胞质中的DNA会引发cGAS-STING炎症通路。一般认为,这条通路是从抵抗病毒感染的机制演化而来的。cGAS与微核破裂散落的DNA结合,催化生成2’3’-环鸟腺苷酸(cGAMP),从而激活STING蛋白及下游炎症通路。由于癌组织中有很多微核,就有可能一直激活这条通路,引发持续的炎症反应,驱动肿瘤生长和转移







瞄准CIN


和癌细胞不同,正常的细胞无法耐受染色体分离错误。麻省理工学院(MIT)已故的Angelika Amon曾领导的研究发现,非整倍性与多重细胞缺陷有关联,例如代谢紊乱和线粒体功能紊乱,以及蛋白质折叠错误诱导的细胞应激反应。实际上,人体已经演化出多种机制,能够最终清除非整倍体细胞。达特茅斯盖泽尔医学院(Geisel School of Medicine at Dartmouth)的Duan Compton等人发现,应对染色体分离错误,正常细胞会快速激活肿瘤抑制因子p53,停止细胞分裂,阻止非整倍体细胞蔓延。这些重要的保护机制是为了维护基因组的完整性,一般有了它们,基因组就没事。但是在癌细胞中,这些防线被突破了。因此,理解肿瘤细胞是怎样应对CIN的,可能会对治疗癌症有启发。


学界对肿瘤细胞耐受CIN的机制表现出越来越多的兴趣。近期,多个课题组通过遗传筛选发现了一些基因和一些细胞活动,它们对CIN程度高的肿瘤细胞不可或缺,缺乏则会致死。其中一个是驱动蛋白Kif18a,在有丝分裂期间、染色体运动过程中起作用。对带有CIN的癌细胞来说,Kif18a蛋白在细胞分裂中必不可少,但是不带CIN的癌细胞就不然。有趣的是,如果一只小鼠缺乏有功能的Kif18a蛋白,它仍可以存活,只是表现出一些小的缺陷。那么这个驱动蛋白就有可能成为一个安全有效的治疗靶点。现在已经有一项一期临床试验在癌症晚期病人中测试Kif18a抑制剂的疗效。


还有多个课题组正在探索另一种治疗策略,即,抑制那些让肿瘤细胞克服慢性炎症的靶点。比如ENPP1蛋白,它一开始由哈佛医学院的Timothy Mitchison及斯坦福大学的Lingyin Li(当时也在哈佛)找到,后来我们组发现,它在染色体不稳定的癌细胞中会被选择性上调。ENPP1蛋白是定位在癌细胞外表面的酶,能降解会激发免疫反应的信号分子cGAMP。胞外的cGAMP被降解后,免疫细胞就不能发现癌细胞了。cGAMP降解还能产生腺苷,腺苷又加剧免疫紊乱,促进癌细胞迁移。癌细胞化敌为友、将免疫系统的保护机制挪作己用的能力让我们刮目相看。


Volastra公司的研究者们正在不断深入认识CIN的生物机制,再结合计算和遗传筛选的方法,慢慢发现一些癌症治疗策略。目前首要候选药物的靶标作用于微管结合染色体的过程,它能选择性地杀死染色体不稳定的癌细胞,而不会伤及其他细胞。该药物计划在2023年推向临床试验。我们正在探索的其他治疗策略包括:调节纺锤体的形成、改变细胞分裂期间染色体的组织,以及利用CIN驱动的炎症反应来抗癌。


寻找与CIN相关并且可作为治疗靶标的通路是件令人兴奋的事,它将打破部分癌症无药可及的局面。CIN是个很有吸引力的药物靶标,因为只有癌细胞会表现出染色体不稳定,那么针对CIN的治疗就不会错伤无辜——这是癌症治疗领域的圣杯。过去的十余年间,细胞生物学、基因组学及癌症生物学领域逐渐交织在一起,跨学科研究方法和学术界与产业界的合作将带来新的发现。这一切的终极目标是为病人服务——像我的那位肿瘤转移到脑部的病人,和其他现有的治疗选择十分有限的病人。


本文经授权编译自the-scientist.com,原标题为How Chaos in Chromosomes Helps Drive Cancer Spread
阅读原文:https://www.the-scientist.com/features/how-chaos-in-chromosomes-helps-drive-cancer-spread-69695

相关阅读

1  『重磅!最新发现癌症相关基因』真相:基本找不着跟癌症无关的基因

2  显微镜下看免疫细胞和癌细胞斗智斗勇 | 摸象记

3  癌症靶点研究有哪些不靠谱?诺奖得主指出常见问题

4  休眠癌细胞:野火烧不尽,春风吹又生

5  癌细胞竟会主动攻击免疫细胞,偷取对方的线粒体


近期推荐

1  从论文搁浅到领域顶刊:一个博士生的涅槃

2  燃烧我的卡路里:为什么每天运动,还瘦不下来?

3  你心底的伤,牙仙子从没有忘

4  标准模型的危机:物理学家重新思考自然本质

5  科研人读不起论文,咋整?


特 别 提 示

1. 进入『返朴』微信公众号底部菜单“精品专栏“,可查阅不同主题系列科普文章。

2. 『返朴』提供按月检索文章功能。关注公众号,回复四位数组成的年份+月份,如“1903”,可获取2019年3月的文章索引,以此类推。

版权说明:欢迎个人转发,任何形式的媒体或机构未经授权,不得转载和摘编。转载授权请在「返朴」微信公众号内联系后台。


↓↓返朴书单,点击购买↓↓




长按下方图片关注「返朴」,查看更多历史文章

微信实行乱序推送,常点“在看”,可防失联

猜您喜欢(点击下方标题即可观看):

1.BBC纪录片《世界金融发展史》

2. CCTV纪录片《千年书法》全8集

3. BBC纪录片《文明》全9集

4.BBC纪录片《从太空看地球》

5. BBC纪录片 《中国新年:全球最大庆典》

6. BBC 纪录片《希特勒的邪恶魅力》

7. PBS纪录片<<物质的秘密:寻找元素>>

8. BBC纪录片《生物钟的秘密》

9. BBC纪录片:《现代间谍》(全2集)

10. BBC纪录片《护齿真相》

11. BBC纪录片《酒的真相 》

12.BBC纪录片《化学史》全3集

13.BBC纪录片《香水》全3集

14. PBS纪录片《核弹》

15. BBC纪录片《众神的黄昏:宗教与科学之争》

16.BBC纪录片《头发护理的秘密》

17.BBC纪录片《代孕者》

18.BBC纪录片《七个世界,一个星球》(全7集)

19.电影《父亲困在时间里》

20. BBC纪录片《百年皇家空军》

21. BBC纪录片《肖邦音乐背后的女人》

22. BBC纪录片《地球的力量》(全5集)

23. BBC 纪录片《美容的真相 》

24. BBC纪录片《地球最壮观的景色》(全3集)

25. 电影《心灵捕手》(Good Will Hunting)

26. BBC纪录片《抗生素真相》

27. BBC纪录片《绿色星球》(全5集)

28. BBC纪录片《文艺复兴》全3集

29. BBC纪录片《冰河巨兽》 (全3集)

30. BBC纪录片《社交媒体、愤怒与我们》

31. 纪录片《查尔斯·狄更斯的足迹》

32.BBC纪录片《植物王国》全3集

33.PBS纪录片《波音飞机的致命缺陷》

34.PBS纪录片《普京的战争之路》

35. 纪录片《战火中的乌克兰 》

36. 美國電影《沈默的羔羊》

37. 美國電影《登月计划 》

38.BBC紀錄片《神奇動物:自然歴史》

39. KBS纪录片《面条之路》全6集

40. BBC纪录片《数学的故事》(全4集)

41.BBC纪录片《 科学的故事》全6集

42.BBC纪录片《植物私生活》全6集

43.BBC纪录片《生命的奇迹》全5集

44.BBC纪录片《睡眠十律》

45.BBC 纪录片 《发现中国:美食之旅》全4集

46.BBC纪录片《人类感官 》全3集

47. BBC纪录片《现代世界的天才》(全3集)

48. BBC纪录片《糖脂大战》

49. 电影《美丽人生》

50.BBC纪录片 《生命》全10集

51. BBC 纪录片《强迫症·心魔 》

52.BBC纪录片《健康饮食的真相》

53.BBC纪录片《维生素的真相》

54.BBC纪录片《锻炼的真相》

55.BBC纪录片《地球脉动 I 》全11集

56.BBC纪录片《人脑探险 》全6集

57.BBC纪录片《进食、断食与长寿》

58.BBC纪录片《女王的宫殿 》全3集

59.电影《恐龙:末日》

60.纪录片《监守自盗

61.BBC纪录片《非洲》全6集

62. BBC纪录片《文森特·梵高全传》全3集

63. BBC纪录片《拜占庭:三城记》

64. 电影《香水:一个谋杀犯的故事》

65. CCTV纪录片《茶,一片树叶的故事》全6集

66. BBC纪录片《狗的秘密生活》

67. 纪录片《美国商业大亨传奇》全8集

68.NHK纪录片《敦煌莫高窟》全2集

69. BBC纪录片《伟大的作曲家》全7集

70. 纪录片《人类》

71. 电影《三块广告牌》

72.电影《弱点》

73.BBC纪录片《地球改变之年》

74.BBC纪录片《地球伟大河流》

75.BBC纪录片《德国艺术》 全3集

76.NETFLIX 纪录片《社交困境》

77. CCTV纪录片《布衣中国》全5集

78. NHK纪录片《血糖飙升:揭露潜在威胁》

79.颠覆性研究:早餐吃巧克力,不仅不长胖,反而有助于减肥

80.纪录片《金城兰州》全4集

81.BMC子刊:50万人大型研究,喝任何咖啡都能降低肝病风险

82.BBC纪录片《压力的真相》

83.专访理论物理学家内森·塞伯格:数学对终极物理学理论的导引

84.PBS纪录片《众病之王:癌症传》全3集

85.郑州暴雨,一句“千年一遇”不能挡住所有追问

86.BBC纪录片《生命循环:奇异的腐烂科学》

87.用一个词总结东京奥运会开幕式,那就是……

88. BBC纪录片《二战全史》全26集 (1-10集)

89. BBC纪录片《二战全史》全26集 (11-20集)

90.  BBC纪录片《二战全史》全26集(21-26集)

91.那个让奥运冠军“滚出中国”的女孩,她的病不是“精神分裂”
92.深度长文:东京奥运会究竟为何崩坏?
93.上一个“美利坚”,是怎样衰亡的

94.BBC纪录片《古罗马:一个帝国的兴起和衰亡》全6集

95. BBC纪录片《碳水化合物的真相》

96. 苏炳添这个第六名,比他真拿一块金牌更好

97.  纪录片《影响世界的中国植物》全10集

98. 叶檀老师:你可以舔,但别舔的这么不专业

99. Netflix 纪录片《流行病:如何预防大爆发 》全6集

100.  性侵案一出,阿里这项著名制度成了笑话

101. 热力学怎样理解生命 | 展卷

102.  从简单规则中产生复杂图案,自然是如何做到的?

103.  华盛顿,是怎么被“祖传老西医”治死的

104.  与病毒共存,张文宏这话说的有错吗?

105. 塔利班进了城,值得你那么高兴?
106.  电影《楚门的世界》(The Truman Show)
107. HBO《太平洋战争》全10集

108.  BBC纪录片《香料之路》全3集

109.  “及时雨”宋江,到底算不算个好人

110. BBC纪录片《性格的真相》(The Truth About Personality )

111. BBC纪录片《摄影艺术百年史》(全6集)

112. BBC纪录片《乳香之路 》(全4集)

113.  2021诺贝尔生理或医学奖:身体感受冷热、触觉的科学解释

114.  2021年诺贝尔化学奖揭晓:不对称有机催化研究获奖

115. 肖百龙解读诺贝尔奖:Piezo的发现故事和未解之谜
116. BBC纪录片 《世界上最狡猾的动物》

117. 王羲之《蘭亭序》

118. 联合二甲双胍,四类常见降糖疗法效果有何差别?ADA重磅发表“迄今最大最长”研究

119. 手机刷视频,越刷越上头——沉迷社交媒体是病吗?

120.NHK纪录片《睡眠的科学》

121. 诺奖青睐的触觉研究是怎么做出来的?| Piezo封神之路(上)

122. 机械力如何塑造我们 | Piezo封神之路(下)

123.专访丁奎岭:化学诺奖发错了吗?合成化学的下一个突破在哪里?

124. 动物也识数?它们的数学能力究竟如何?
125. PBS纪录片《数学大迷思》
126. 高血压加速大脑衰老?错!正常血压就开始了
127. BBC纪录片《美丽中国》全6集
128. HBO纪录片《战争迷雾》
129. 中产阶层,为什么最脆弱又最重要
130. Wilkinson催化剂及其应用

131. BBC纪录片《航空发动机制造全过程》

132. 法语、德语、意大利语、罗曼什语、英语:瑞士人是如何彼此沟通交流的?

133.  科学可以被统一吗?

134. 综述|药物递送进化史

135. BBC纪录片《犹太人的故事》全5集

136. 世界十大煤矿

137. 马斯克脑机接口新进展:猴子用意念打“乒乓”游戏丨环球科学要闻

138. 人口出生率正式跌破1%,我们将面临现实版的“老鼠乐园”吗?

139.  大多数人类起源的故事,都与已知的化石不符

140.  BBC纪录片《佛教世界七大奇迹》

141.  纪录片《身体语言的秘密》

142.  恼人的唇疱疹又发作了……新发现揭示了它反复发病的机制

143. 《细胞》子刊:科学家首次实现胰腺导管类器官的体外建模

144.  我国学者研究发现:压力大、贫穷,更容易患心脏病

145.  综述|肿瘤免疫疗法汇总

146.  信任,为什么重要?

147.  科学与哲思没有国界:阿拉伯百年翻译运动 | 展卷

148.  BBC纪录片《自然界大事件》全6集

149.  别惹小人,这算不算一种胆怯?

150.  盘点咖啡与疾病的关系,喝多少最健康?

151.  从阿尔兹海默症看疫苗百年发展

152.  认知的两大陷阱:知识胶囊与有毒思想

153.  衰老研究的大问题:百岁老人的长寿秘密是什么?

154.  生活在城市,动物的体型都变了

155.  为什么你只有黑色素,动物们却有五彩斑斓的蓝?

156. BBC纪录片《与虫共存 》

157. Cell子刊:突破!无需胰岛素,也能治疗糖尿病

158. 海洋生物中的行为艺术家:多种多样的蟹老板们

159.  RNA疫苗十年诞生史

160.  防不胜防的“注射式洗脑”

161.  当读书进入“美丽的新世界”

162.  时代变迁中的科学与科学家形象丨纪念霍金诞辰80周年

163.  衰老等于氧化吗?

164. 致幻剂:精神疾病治疗的新希望?

165. 颜宁教授就讲了句常识,咋踩了这么多看客的尾巴

166. 哈佛研究表明:每天7克橄榄油,降低心脏病、癌症、痴呆症等风险

167. 一切危机,都是人性的危机

168. 肌肉骨骼与衰老

169. “真正的”敌人:文明的衰败,从语言开始

170.  五花八门视错觉,研究它们有啥用?

171.  袁靖:虎年说虎

172.  追问新知 | 想吃饱又不超重,这可能吗?

173.  从混沌到自由意志

175.  一路物理传奇:从原子结构到核能利用丨贤说八道

176.  哪怕是大总统,也挡不住中国人回家过年

177. 当代青年生存物语:普通但自信,精致又脆弱

178.  喝酒脸红不代表酒量大!即使少喝,患癌风险也大增

179. 那个“小胡子”是怎么混成“流量网红”

180. 遇事不决?真的可以来试试量子力学

181. 警惕知识分子的鸦片——当意识形态成了新的“宗教”

182. 年货怎么买?疫情囤粮囤哪些?一篇文章,干货拉满

183. BBC纪录片《艺术的力量》(全8集)

184. 面对乌克兰,普京的困局,跟诸葛亮挺像的

185. 柳叶刀:打工人,加班越多,得病越多

186. 从双螺旋到国家基因库

187.  综述 | 应激相关神经精神障碍的病理生理机制

188. 谁也逃脱不掉的“算法困局”

189. 餐桌上的危机:我们还能安全吃肉吗?丨展卷

190. BBC纪录片《地球造人》全5集

191. 美文选刊|日本的礼物文化(上)

192. 美文选刊|日本的礼物文化(下)

193.  BBC纪录片《猫的秘密生活》

194. Nature人类行为:“坏事传千里”背后的归因偏误

195. 透纳:那个教会你与灾变共舞的画家

196. 食药同源!首次证明,食物干预与降低胆固醇的药物一样有效

197. 旷世杰作:世上最精美且技术难度最高的大理石雕塑竟出自他之手丨艺海拾真

198. BBC纪录片《艺术爱好者指南》(An Art Lovers' Guide (2017))

199. 梁山成伙最大“功臣”,死的最惨也最活该

200. 该睡不睡,心脏遭罪!我国学者发现打破昼夜节律致心脏病的机制

201. 癌症探索里程碑

202. 纪录片《哈耶克的一生及其思想》

203. 美国国父们的初心,洞悉美国兴衰的根源

204. 捏住老虎的后颈,它会不会像猫一样变乖?丨奇怪的动物知识

205. 当记忆被吞噬时,大脑里在发生什么?

206. BBC纪录片《中国艺术 》全3集

207. BBC纪录片《印度的故事》全6集

208. PBS纪录片《行为恶劣的植物》

209. BBC纪录片《英伦四季》(The Great British Year )

210. BBC纪录片《历史疑案 》(全4集)

211. BBC纪录片《两性奥秘》(全3集)

212. 现代社会让人年老更易痴呆?丨展卷

213. 射雕英雄传,究竟讲了什么

215. BBC纪录片《二战全史》全26集

216. 趣味数学游戏:隐藏在生活中的超越数(上)

217. 趣味数学游戏:隐藏在生活中的超越数(下)

218.  BBC纪录片《老年痴呆的真相》

219.  BBC紀錄片《求偶競賽》(全5集)

220.  “买妻生子”的盲山式穷愚,是种心灵癌症

221. 躺着减肥来了!真实世界研究:睡懒觉可减少卡路里摄入,有助于减肥

222. 药物研发有多依赖动物模型?

223. 空调系统的应用与未来

224. 想象力的贫乏,让世界变得平庸

225.  美文选刊|减压六招(上)

226. 美文选刊|减压六招(下)

227. 相亲结婚,数学教你找到最佳伴侣

228. 在她身上,曹雪芹暗喻了那个世界的残酷

229. BlueAntMedia 纪录片《神奇动物的一天》全8集

230. 研究揭示:喜欢吃巧克力,究竟有哪些健康益处?

231. CCTV纪录片《河西走廊》全10集

232.  现实中的灭霸:危险入侵物种,可能潜伏在暗处

233. 前沿研究丨基于雾计算的工业大数据集成与共享方法

234. Nature:直接“吃掉”塑料!华人科学家开发塑料降解新工艺,最快两天内完全分解

235. 数学内外

236.  美文选刊|城市交通的可持续发展

237. BBC 纪录片《父亲的生物学意义》

239.  总有那么多人,觉得“刁民”就该由酷吏来治

240.  原来,被拐卖,不是她遭遇的最可怕的侮辱

241. Nature子刊:咖啡续命!喝咖啡降低坏胆固醇,降低死亡风险

242. Nature热点综述 | 癌症的全身系统性免疫与治疗

243. 审美:我们正在遭遇的另一场战争

244.  新冠后遗症与心血管疾病之谜

245. 女王的方言

246. 为什么有时候开心到极致,会突然难过?

247. 生物机器人,不只是机器人那么简单

248. CCTV紀錄片《書簡閱中囯》(全6集)

249. 为什么李元芳、展昭、白玉堂,都有这个共同的“体制内职称”……

250. 被排挤的痛苦:动物等级与校园霸凌丨展卷

251. 葡萄干要不要洗了再吃?吃对很甜美,选错超胖人!

252. 神药“伟哥”再立功!或可治疗致命的进食障碍

253. 饥肠辘辘时,大脑的编码精度会降低吗?

254. 美国成就美国,美国反对美国:《五月花号公约》四百年

255. 吃降压药、吃他汀的人,可以吃柚子吗?橘子、橙子呢?

256. 试管婴儿并不生于试管——胚胎何时起成为“人”?| 展卷

257. 人类还在演化吗?

258. 为什么会流眼泪?

259. BBC纪录片《中国故事》(全6集)

260.  从请刘备吃人,到用铁链拴妻

261. 为什么现在的药不如以前多,也不如以前有用了?

262.  忧伤!我国学者发现,新冠病毒会导致“蛋蛋”萎缩和损伤

263.  猪心移入活人体内,二师兄可以造福多少人类?

264.  你身体里无处不在的DNA,有些可能是肿瘤细胞的邪恶计划

265.  吃竹子都能胖?熊猫告诉你肥胖在于肠道微生物

266.  俄罗斯,为何永远停不下扩张的脚步

267.  昆虫馅饼配海藻酱料,未来我们就吃这?

268. 美文选刊|远程办公提速增效的十八条秘诀(上)

269. 美文选刊|远程办公提速增效的十八条秘诀(中)

270. 美文选刊|远程办公提速增效的十八条秘诀(下)

271. Nature子刊:喝鲜榨果汁降低免疫力?高果糖饮食损害免疫系统

272. 母系遗传关系是怎样鉴定的?| DNA亲子鉴定的科学原理

273.  整个宇宙存在于一只冰淇淋中?

274.  乌克兰血泪史:交友需谨慎,认大哥要选对人

275. Science:重磅!高脂饮食伤肠道损菌群,促进心脏病

276. 能同化其他种族的神秘物质,真的降临到了地球?

277. 俄乌之战,为什么打到普京要用核威慑了

278. 葬熊坟场:当年的阿富汗,今天的乌克兰

279. 美国纪录片《食品公司》

280.  NEJM:惊人发现,肥胖真的会传染

281. 时空是像素化的吗?

282.  纪录片《安225超级运输机》

283. 美文选刊|远程办公提速增效的十八条秘诀

284. 心心相印的梦想,脑脑接口的真相:马斯克追求的“传心术”有可能实现吗?

285. BBC纪录片《俄罗斯全史》

286. 电影《顿巴斯》

287. BBC纪录片《普京,俄罗斯和西方世界》(全4集)

288. Nature子刊:癌症在种族之间发病有何不同,中国人最易患哪种癌?

289.  “只想做个书生”和一则笑话 | 科学遐思

290. 以开放看待文明:人类史上的三种社会秩序

291. 美学者呼吁教改:科学哲学走进中学课堂,让学生理解科学的本质

292. 大国之间还会爆发大战吗?

293. BBC纪录片《俄罗斯艺术 》(全3集)

294. BBC纪录片《俄罗斯的百年怀疑》

295. BBC 纪录片《笑的科学》

296. 花园里的弦理论

297. CNN纪录片《普京-世界上最有权势的男人》

298. 这位有诗人灵魂的女数学家,她每篇论文都值一个博士学位

299. Lygos启动百公斤高纯大麻素发酵生产

300. 人类为什么进化出了父亲角色?

301. Science:为什么越老,睡个好觉就越难

302. 超大规模研究,个子高增加患癌风险,每高10cm,增加14%

303. 影响力超过莎士比亚,却无人知晓?

304. 从超级计算机到量子计算机的飞跃,或将解开物理学中最神秘概念!

305. 韩国政坛变天!俄乌战争推倒的第一张多米诺

306. 新研究发现,睡觉打呼噜加速衰老,但治疗可逆转

307. 创新药大爆发时代伴随而来的是什么?

308. 罗翔:功利性读书让人只想成功,无法接受失败

309. 几乎所有冲突,都是文化与文明的冲突

310. 科学怎样打败科学家:达尔文相信男优女劣,进化论却不相信

311.  BBC纪录片《新鲜水果的冒牌货》

312.  BBC纪录片《迪拜内幕:富人的游乐场》(全3集)

313. 治疗帕金森:大脑深处,一颗核桃大小的谜团

314.  屎里面别有洞天,几百坨屎绘出远古食物网

315. 北极熊真的要灭绝了吗?

316. 痛风,了解一下~

317. 当世界冲向悬崖时,需要有一种力量拉住它

318. 50万国人研究证实:不好好刷牙,致癌!血管疾病也会增多!

319.  纪录片《俄罗斯对抗全世界》

320.  “格局病”患者:身为韭菜却总精准“共情”镰刀

321. Nature子刊:仅喝3个月酸奶,促进代谢健康,降低糖尿病风险

322. 警惕“圣化构想”:三个远未终结的世纪神话

323.  细菌在密谋,病毒在窃听:微生物的群体感应

324. 用进废退?| 洞穴鱼类眼睛退化的原因

325. 感染新冠,怎么还损伤到大脑了?

326. 肠道的情绪

327. 结核,被遗忘的瘟疫

328. JAMA子刊:酒,无论喝多少,都会增加心脏病、高血压风险

329. 肥胖不仅导致癌症发病率增加,而且影响肿瘤微环境,促进肿瘤进一步发展

330.  哈耶克去世30年,世界却更需要他

331. 三打白骨精,一场诡谲的中式“权力的游戏”

332. BBC纪录片《世界上最昂贵的名画》

333.  纪录片《健康是什么》

334. BBC纪录片《太阳系的奇迹》

335. BBC纪录片《猎捕》全7集

336. NHK纪录片《男女关系的秘密》

337. BBC纪录片《我们的星球》全8集

338. 纪录片《中国古建筑》全8集
339. 比无知更可怕的,是聪明人的愚蠢
340.  柳叶刀:别吃太咸,高盐让中国的死亡世界第一
341.  弱国化石,逃不脱科学殖民主义的阴影
342.  如何走出人生低谷和情绪低迷?
343. 乌克兰,俄罗斯已经无法“做活”的一局棋
344.  电影《圣经故事》全10集
345. 凯赛与华理鲍杰等联合开发秸秆制聚乳酸前体技术
346. Netflix纪录片《一落千丈:波音大调查》
347. 脱发自救指南:拿什么拯救你?我的稀疏秀发…
348. 肥皂和蚊子:打败“回南天”的秘密武器?
349. 2022年最具潜力的10个药品预测
350. 柳叶刀:当新冠遇上流感,重症和死亡风险加倍
351. 藏文科普 | 结香:练柔术的芳香明星
352. 【科学综述】北大吴飙教授:埃弗里特和他的多世界理论
353. 巨兽:300年来 “打工人” 最初的想象
354. 传奇褪色的时代:从“αβγ”的小科学到千人作者的“超署名” | 昌海一述
355.  瘟疫:人类的敌人,历史的推手
356. Nature:即使是新冠轻症,也可致大脑老化十年
357.  “刻于金石,以垂后世”:文明史上最值得铭刻的三句话
358. 一个全民“爱国”的大国,是怎样在入侵中秒跪的
359. 剧变时代,相信好书的力量
360. 羞愧感:失格时代最缺的一味药
361. NEJM:中国人的减肥方法来了,少吃才是关键!
362. 不管什么医,若自认是科学,就该容忍质疑
363. 情种起源:被爱情改造的大脑
364. 电影《动物农庄》
365. BBC纪录片《托尔斯泰的烦恼》
366. 电影《一九八四》
367. 敌人的敌人,真的未必是朋友

368. 纪录片《中国古典园林之旅》全7集

369. 纪录片《 探险家:最后的特普伊山》
370.  纪录片《徒手攀岩》
371. 纪录片《登山家》
372.  纪录片 《阿尔卑斯:自然的巨人》

373. BBC纪录片《肉的真相》

374. PBS纪录片《透视美国》全4集

375. PBS纪录片《伟大的疯狂》

376. 打人是不对的,但打得好!

377. 鲸类搁浅,为何这么难抢救?

378. 中国学者《柳叶刀》子刊发现,久坐增加12种疾病风险

379.  尴尬的“赛先生”:缺失但又被滥用的科学

380. 老药新用在药物发现中大放异彩

381. 警惕“正义的错觉”——互联网世界更需要“大胆怀疑,小心求证”

382.  量子纠缠:“幽灵般的超距作用”究竟是怎么回事?丨展卷

383. 化学“泰斗”卡尔·巴里·夏普利斯(Karl Barry Sharpless)的一只眼睛是怎么瞎的

384. 电影《再见列宁》

385. 纪录片《水深火热的星球 》全6集

386. 电影《铁皮鼓》

387.电影《蒙娜丽莎的微笑》

388. 纪录片《河西走廊之嘉峪关》全6集

389. 香菜那么好吃,为啥有人说它有股臭屁虫味



您可能也对以下帖子感兴趣

文章有问题?点此查看未经处理的缓存